Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Lung Function Outcomes
2.3. Respiratory Phenotype Determination
2.4. Dietary Assessment
2.5. Other Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dwyer-Lindgren, L.; Bertozzi-Villa, A.; Stubbs, R.W.; Morozoff, C.; Shirude, S.; Naghavi, M.; Mokdad, A.H.; Murry, C.J. Trends and patterns of differences in chronic respiratory disease mortality among US counties, 1980–2014. JAMA 2017, 318, 1136–1149. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Weiss, S.T. Relationship between dietary vitamin C intake and pulmonary function in the first national health and nutrition examination survey (NHANES I). Am. J. Clin. Nutr. 1994, 59, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Romieu, I. Nutrition and lung health. Int. J. Tuberc. Lung Dis. 2005, 9, 362–374. [Google Scholar] [PubMed]
- Hanson, C.; Lyden, E.; Rennard, S.; Mannino, D.M.; Rutten, E.P.; Hopkins, R.; Young, R. The relationship between dietary fiber intake and lung function in the national health and nutrition examination surveys. Ann. Am. Thorac. Soc. 2016, 13, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Varraso, R.; Chiuve, S.E.; Fung, T.T.; Barr, R.G.; Hu, F.B.; Willett, W.C.; Camargo, C.A. Alternate healthy eating index 2010 and risk of chronic obstructive pulmonary disease among US women and men: Prospective study. BMJ 2015, 350, h286. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.O.; Jameson, K.A.; Syddall, H.E.; Sayer, A.A.; Dennison, E.M.; Cooper, C.; Robinson, S.M. The relationship of dietary patterns with adult lung function and COPD. Eur. Respir. J. 2010, 36, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Kumar, A.; Mastana, S.S.; Lindley, M.R. N-3 fatty acids and asthma. Nutr. Res. Rev. 2016, 29, 1–16. [Google Scholar] [CrossRef]
- Mickleborough, T.D.; Rundell, K.W. Dietary polyunsaturated fatty acids in asthma- and exercise-induced bronchoconstriction. Eur. J. Clin. Nutr. 2005, 59, 1335–1346. [Google Scholar] [CrossRef]
- Giudetti, A.M.; Cagnazzo, R. Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins Other Lipid Mediat. 2012, 99, 57–67. [Google Scholar] [CrossRef]
- Shahar, E.; Folsom, A.R.; Melnick, S.L.; Tockman, M.S.; Comstock, G.W.; Gennaro, V.; Higgins, M.W.; Sorlie, P.D.; Ko, W.J.; Szklo, M. Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. Atherosclerosis risk in communities study investigators. N. Engl. J. Med. 1994, 331, 228–233. [Google Scholar] [CrossRef]
- Schwartz, J.; Weiss, S.T. The relationship of dietary fish intake to level of pulmonary function in the first national health and nutrition survey (NHANES I). Eur. Respir. J. 1994, 7, 1821–1824. [Google Scholar] [CrossRef] [PubMed]
- McKeever, T.M.; Lewis, S.A.; Cassano, P.A.; Ocké, M.; Burney, P.; Britton, J.; Smit, H.A. The relation between dietary intake of individual fatty acids, FEV1 and respiratory disease in dutch adults. Thorax 2008, 63, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Broekhuizen, R.; Wouters, E.F.; Creutzberg, E.C.; Weling-Scheepers, C.A.; Schols, A.M. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. Thorax 2005, 60, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Attia, J.; McElduff, P.; McEvoy, M.; Gibson, P.G. Assessment of dietary fat intake and innate immune activation as risk factors for impaired lung function. Eur. J. Clin. Nutr. 2010, 64, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; World Health Organization. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis; World Health Organization: Geneva, Switzerland, 2016.
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.T.; Chang, C.Y.; Chang, L.F.; Nesaretnam, K. Modulation of obesity-induced inflammation by dietary fats: Mechanisms and clinical evidence. Nutr. J. 2014, 13, 12. [Google Scholar] [CrossRef]
- Hancox, R.J.; Poulton, R.; Greene, J.M.; Filsell, S.; McLachlan, C.R.; Rasmussen, F.; Taylor, D.R.; Williams, M.J.; Williamson, A.; Sears, M. Systemic inflammation and lung function in young adults. Thorax 2007, 62, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, F.; Mikkelsen, D.; Hancox, R.J.; Lambrechtsen, J.; Nybo, M.; Hansen, H.S.; Siersted, H.C. High-sensitive C-reactive protein is associated with reduced lung function in young adults. Eur. Respir. J. 2009, 33, 382–388. [Google Scholar] [CrossRef]
- Tashiro, H.; Takahashi, K.; Sadamatsu, H.; Kato, G.; Kurata, K.; Kimura, S.; Sueoka-Aragane, N. Saturated fatty acid increases lung macrophages and augments house dust mite-induced airway inflammation in mice fed with high-fat diet. Inflammation 2017, 40, 1072–1086. [Google Scholar] [CrossRef]
- Wood, L.G.; Garg, M.L.; Gibson, P.G. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J. Allergy Clin. Immunol. 2011, 127, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Praagman, J.; Beulens, J.W.; Alssema, M.; Zock, P.L.; WAnders, A.J.; Sluijs, I.; Van Der Schouw, Y.T. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European prospective investigation into cancer and nutrition-Netherlands cohort. Am. J. Clin. Nutr. 2016, 103, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Brassard, D.; Tessier-Grenier, M.; Allaire, J.; Rajendiran, E.; She, Y.; Ramprasath, V.; Gigleux, I.; Talbot, D.; Levy, E.; Tremblay, A.; et al. Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 800–809. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Otto, M.C.; Mozaffarian, D.; Kromhout, D.; Bertoni, A.G.; Sibley, C.T.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary intake of saturated fat by food source and incident cardiovascular disease: The multi-ethnic study of atherosclerosis. Am. J. Clin. Nutr. 2012, 96, 397–404. [Google Scholar] [CrossRef] [PubMed]
- National Health and Nutrition Examination Survey. Updated 28 February 2018. Available online: https://www.cdc.gov/nchs/nhanes (accessed on 2 August 2018).
- Hankinson, J.L.; Odencrantz, J.R.; Fedan, K.B. Spirometric reference values from a sample of the general U.S. population. Am. J. Respir. Crit. Care Med. 1999, 159, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Vestbo, J.; Hurd, S.S.; Agusti, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M.; et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013, 187, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Mannix, E.T.; Manfredi, F.; Farber, M.O. Elevated O2 cost of ventilation contributes to tissue wasting in COPD. Chest 1999, 115, 708–713. [Google Scholar] [CrossRef]
- Efthimiou, J.; Mounsey, P.J.; Benson, D.N.; Madgwick, R.; Coles, S.J.; Benson, M.K. Effect of carbohydrate rich versus fat rich loads on gas exchange and walking performance in patients with chronic obstructive lung disease. Thorax 1992, 47, 451–456. [Google Scholar] [CrossRef]
- Ryan, C.F.; Road, J.D.; Buckley, P.A.; Ross, C.; Whittaker, J.S. Energy balance in stable malnourished patients with chronic obstructive pulmonary disease. Chest 1993, 103, 1038–1044. [Google Scholar] [CrossRef]
- Cai, B.; Zhu, Y.; Ma, Y.; Xu, Z.; Zao, Y.; Wang, J.; Lin, Y.; Comer, G.M. Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients. Nutrition 2003, 19, 229–232. [Google Scholar] [CrossRef]
- Tümer, G.; Mercanligil, S.M.; Uzun, O.; Aygün, C. The effects of a high-fat, low-carbohydrate diet on the prognosis of patients with an acute attack of chronic obstructive pulmonary disease. Turkiye Klinikleri J. Med. Sci. 2009, 29, 895–904. [Google Scholar]
- Rogers, R.M.; Donahoe, M.; Costantino, J. Physiologic effects of oral supplemental feeding in malnourished patients with chronic obstructive pulmonary disease. A randomized control study. Am. Rev. Respir. Dis. 1992, 146, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, H.A.; Salzano, J.V. Effects of carbohydrate metabolism upon respiratory gas exchange in normal men. J. Appl. Physiol. 1971, 30, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Meijer, K.; de Vos, P.; Priebe, M.G. Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, D.R.; Welsh, D.A.; Shellito, J.E. Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol. 2015, 6, 1085. [Google Scholar] [CrossRef] [PubMed]
- Sinden, N.J.; Stockley, R.A. Systemic inflammation and comorbidity in COPD: A result of ’overspill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax 2010, 65, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Broekhuizen, R.; Wouters, E.F.; Creutzberg, E.C.; Schols, A.M. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 2006, 61, 17–22. [Google Scholar] [CrossRef]
- Raatz, S.; Conrad, Z.; Johnson, L.; Picklo, M.; Jahns, L. Relationship of the reported intakes of fat and fatty acids to body weight in US adults. Nutrients 2017, 9, 438. [Google Scholar] [CrossRef]
- Zong, G.; Yanping, L.; Wanders, A.; Alssema, M.; Zock, P.; Willett, W.; Hu, F.; Sun, Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: two prospective longitudinal cohort studies. BMJ 2016, 355, i5796. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Ascherio, A.; Colditz, G.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am. J. Clin. Nutr. 1999, 70, 1001–1008. [Google Scholar] [CrossRef]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; Marsland, B.J. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166. [Google Scholar] [CrossRef] [PubMed]
- De Wit, N.; Derrien, M.; Bosch-Vermeulen, H.; Derrien, M.; Bosch-Vermeulen, H.; Oosterink, E.; Keshtkar, S.; Duval, C.; de Vogel-van den Bosch, J.; Kleerebezem, M.; et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G589–G599. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.A.; Hoffmann, C.; Sherrill-Mix, S.A.; Keilbaugh, S.A.; Hamady, M.; Chen, Y.Y.; Knight, R.; Ahima, R.S.; Bushman, F.; Wu, G.D. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009, 137, e1–e2. [Google Scholar] [CrossRef]
- Kellow, N.J.; Coughlan, M.T.; Reid, C.M. Metabolic benefits of dietary prebiotics in human subjects: A systematic review of randomised controlled trials. Br. J. Nutr. 2014, 111, 1147–1161. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chi, M.M.; Scull, B.P.; Rigby, R.; Schwerbrock, N.M.; Magness, S.; Jobin, C.; Lund, P.K. High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 2010, 5, e12191. [Google Scholar] [CrossRef] [PubMed]
- Geurts, L.; Neyrinck, A.M.; Delzenne, N.M.; Knauf, C.; Cani, P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes 2014, 5, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hotamisligil, G.S. Metabolism: Host and microbes in a pickle. Nature 2010, 464, 1287–1288. [Google Scholar] [CrossRef]
- Jiang, R.; Jacobs, D.R.; He, K.; Hoffman, E.; Hankinson, J.; Nettleton, J.A.; Barr, R.G. Associations of dairy intake with CT lung density and lung function. J. Am. Coll. Nutr. 2010, 29, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; Reedy, J.; Schap, T.E.; Wilson, M.M.; Krebs-Smith, S.M. The national cancer institute’s dietary assessment primer: A resource for diet research. J. Acad. Nutr. Diet. 2015, 115, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- USDA Food Composition Databases. Updated 17 May 2018. Available online: https://ndb.nal.usda.gov (accessed on 9 July 2018).
- Guder, G.; Brenner, S.; Angermann, C.; Ertl, G.; Held, M.; Sachs, A.; Lammers, J.W.; Zanen, P.; Hoes, A.; Stork, S.; et al. Gold or lower limit of normal definition? A comparision with expert-based diagnosis of chronic obstructive pulmonary disease in a prospective cohort study. Respir. Res. 2012, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Toren, K.; Andersson, M.; Olin, A.C.; Blanc, P.; Jarvholm, B. Airflow limitation classified with the fixed ratio or the lower limit of normal and cause-specific mortality—A prospective study. Respir. Med. 2018, 144, 36–41. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Entire population Mean (SE) | Quartile 1 Mean (SE) ≤16.98 g/day | Quartile 2 Mean (SE) >16.98 to 24.06 g/day | Quartile 3 Mean (SE) >24.06 to 33.69 g/day | Quartile 4 Mean (SE) >33.69 | p Value |
---|---|---|---|---|---|---|
Continuous Variables | ||||||
Age (years) | 44.4 (0.40) | 46.1 (0.44) | 45.9 (0.51) | 43.6 (0.53) | 41.9 (0.54) | <0.0001 |
Height (cm) | 169.4 (0.15) | 165.6 (0.21) | 167.9 (0.27) | 170.4 (0.21) | 173.8 (0.20) | <0.0001 |
Poverty-to-income ratio | 3.1 (0.05) | 2.9 (0.06) | 3.2 (0.06) | 3.2 (0.06) | 3.1 (0.06) | <0.0001 |
Energy Intake (kcal/day) | 2172.0 (12.9) | 1431.9 (9.5) | 1887.4 (12.7) | 2276.1 (13.6) | 3111.3 (20.1) | <0.0001 |
C-reactive protein (mg/dL) | 0.36 (0.01) | 0.38 (0.02) | 0.35 (0.01) | 0.33 (0.02) | 0.36 (0.02) | 0.30 |
Forced Expiratory Volume in 1 second (FEV1) (mL) | 3251.2 (15.5) | 2942.9 (22.5) | 3116.2 (26.9) | 3326.8 (19.6) | 3604.5 (23.6) | <0.0001 |
Forced Vital Capacity (FVC) (mL) | 4163.9 (14.9) | 3754.8 (24.2) | 3989.4 (29.8) | 4258.4 (21.6) | 4629.0 (23.6.) | <0.0001 |
FEV1/FVC ratio | 0.78 (0.003) | 0.78 (0.002) | 0.78 (0.002) | 0.78 (0.002) | 0.78 (0.003) | 0.56 |
FEV1% predicted | 97.0 (0.41) | 96.8 (0.53) | 97.2 (0.56) | 97.2 (0.50) | 97.0 (0.50) | 0.79 |
FVC% predicted | 98.8 (0.31) | 98.7 (0.44) | 99.0 (0.56) | 99.0 (0.56) | 98.5 (0.49) | 0.77 |
Discrete Variables, n (%) | ||||||
Body Mass Index (BMI) Category (WHO classification) | ||||||
<18.5 | 142 (1.3) | 48 (1.7) | 30 (1.2) | 25 (0.77) | 43 (1.6) | 0.003 |
≤18.5–24.9 | 3105 (30.2) | 948 (32.6) | 763 (31.5) | 753 (29.9) | 685 (26.7) | |
≥25–30 | 3675 (33.8) | 1099 (32.7) | 911 (34.2) | 869 (32.8) | 840 (35.2) | |
<30 kg/m2 | 6898 (63) | 1192 (32.9) | 983 (32.9) | 1048 (36.4) | 893 (36.5) | |
BMI Category (obesity stratification) | ||||||
≤30 kg/m2 | 6898 (63.0) | 2091 (63.6) | 1696 (67.0) | 1640 (63.3) | 1563 (63.1) | 0.02 |
>30 kg/m2 | 4082 (37.0) | 1196 (36.4) | 991 (33.0) | 1055 (39.7) | 898 (36.8) | |
≤40 kg/m2 | 10,388 (93.0) | 3085 (94.6) | 2517 (94.4) | 2516 (93.4) | 2277 (92.8) | 0.07 |
>40 kg/m2 | 742 (7.0) | 202 (5.4) | 179 (5.6) | 178 (6.6) | 184 (7.2) | |
Race | ||||||
Mexican American | 1777 (16.1) | 576 (8.9) | 424 (7.5) | 452 (7.5) | 345 (7.6) | <0.001 |
Other Hispanic | 1184 (10.6) | 448 (6.9) | 274 (4.9) | 262 (4.9) | 200 (4.1) | |
Non-Hispanic White | 5001 (44.7) | 1176 (62.6) | 1235 (70.7) | 1265 (70.7) | 1328 (76.1) | |
Non-Hispanic Black | 2306 (20.6) | 706 (11.7) | 561 (10.0) | 561 (10.0) | 471 (8.8) | |
Other | 892 (8.0) | 399 (9.9) | 206 (6.9) | 161 (6.8) | 126 (3.4) | |
Sex | ||||||
Male | 5548 (49.5) | 1130 (31.4) | 1150 (40.4) | 1481 (53.0) | 1787 (71.7) | <0.001 |
Female | 5632 (50.5) | 2175 (68.6) | 1550 (59.6) | 1224 (47.0) | 683 (28.3) | |
Airflow obstruction | ||||||
No | 9756 (87.3) | 2902 (86.8) | 2351 (86.6) | 2365 (87.0) | 2138 (85.9) | 0.78 |
Yes | 1424 (12.7) | 403 (13.2) | 349 (13.4) | 340 (13.0) | 332 (14.1) | |
GOLD 1 (FEV1/FVC < 0.7; FEV1 ≥ 80% predicted) | 658 (53.9) | 163 (52.2) | 164 (56.2) | 159 (51.6) | 172 (58.2) | N/A |
GOLD 2 (FEV1/FVC < 0.7; 50% ≤ FEV1 <80% predicted) | 494 (40.0) | 125 (39.4) | 121 (38.6) | 130 (43.6) | 118 (38.3) | |
GOLD 3 (FEV1/FVC < 0.7; 30% ≤ FEV1 50% predicted) | 67 (0.05) | 25 (8.2) | 15 (4.6) | 18 (408) | 9 (3.5) | |
GOLD 4 FEV1/FVC < 0.7; FEV1 < 30% predicted) | 2 (0.001) | 1 (0.3) | 1 (0.5) | 0 | 0 | |
Smoking Status | <0.001 | |||||
Never | 5898 (54.5) | 1940 (57.5) | 1426 (56.3) | 1380 (53.5) | 1152 (51.6) | |
Former | 2491 (22.9) | 693 (22.4) | 643 (24.7) | 631 (24.4) | 524 (23.7) | |
Current | 2442 (22.5) | 603 (20.2) | 548 (19.0) | 610 (22.1) | 681 (24.7) |
Outcome | Quartile 1 <16.98 g/day | Quartile 2 >16.98 to 24.06 g/day | Quartile 3 >24.06 to 33.69 g/day | Quartile 4 >33.69 g/day | |||
---|---|---|---|---|---|---|---|
β | p | β | p | β | p | ||
FEV1 * | −1264 | 0.04 | −484 | 0.35 | −931 | 0.14 | Ref |
FVC * | −16588 | 0.01 | −624 | 0.44 | −980 | 0.10 | Ref |
FEV1/FVC * | −0.005 | 0.16 | −0.004 | 0.16 | −0.001 | 0.58 | Ref |
FEV1 % predicted ** | −2.8 | 0.15 | −0.43 | 0.78 | −2.20 | 0.20 | Ref |
FVC % predicted ** | −3.3 | 0.04 | −0.75 | 0.67 | −1.7 | 0.17 | Ref |
a | ||||||||
Entire population Mean (SE) | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | ||||
Butanoic acid intake (C4:0), gm/day | 0.66 (0.01) | <0.20 | >0.20 to 0.40 | >0.40 to 0.68 | >0.68 | |||
Hexanoic acid intake (C6:0), gm/day | 0.30 (0.005) | <0.12 | >0.12 to 0.23 | >0.23 to 0.39 | >0.39 | |||
Octanoic acid intake (C8:0), gm/day | 0.25 (0.004) | <0.10 | >0.10 to 0.19 | >0.19 to 0.33 | >0.33 | |||
Decanoic acid intake (C10:0), gm/day | 0.47 (0.007) | <0.20 | >0.20 to 0.36 | >0.36 to 0.58 | >0.58 | |||
Dodecanoic acid intake (C12:0), gm/day | 0.78 (0.02) | <0.26 | >0.26 to 0.49 | >0.49 to 0.87 | >0.87 | |||
Tetradecanoic acid (C14:0), gm/day | 2.3 (0.03) | <1.05 | >1.05 to 1.73 | >1.73 to 2.63 | >2.63 | |||
Hexadecanoic acid (C16:0), gm/day | 14.4 (0.14) | <8.01 | >8.01 to 11.44 | >11.44 to 15.90 | >15.90 | |||
Octadecanoic acid (C16:0), gm/day | 6.7 (0.07) | <3.54.01 | >3.54 to 5.26 | >5.26 to 7.46 | >7.46 | |||
b | ||||||||
FVC % Predicted * | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | padj for linear trend | |||
β | p value | β | p value | β | p value | |||
Butanoic acid (C4:0) | −2.22 | 0.009 | −1.53 | .03 | −1.26 | 0.04 | Ref | 0.01 |
Hexanoic acid (C6:0) | −1.61 | 0.04 | −0.73 | 0.30 | −0.83 | 0.13 | Ref | 0.05 |
Octanoic acid (C8:0) | −2.06 | 0.009 | −1.53 | 0.02 | −0.45 | 0.38 | Ref | 0.005 |
Decanoic acid (C10:0) | −1.86 | 0.03 | −1.81 | 0.01 | −1.12 | 0.04 | Ref | 0.03 |
Dodecanoic acid (C12:0) | −1.72 | 0.02 | −1.07 | 0.07 | −0.41 | 0.49 | Ref | 0.01 |
Tetradecanoic acid (C14:0) | −2.61 | 0.004 | −2.05 | 0.01 | −1.54 | 0.02 | Ref | 0.004 |
Hexadecanoic acid (C16:0) | −0.02 | 0.97 | −0.17 | 0.79 | −0.25 | 0.64 | Ref | 0.75 |
Octadecanoic acid (C18:0) | 1.04 | 0.23 | 0.40 | 0.59 | 0.65 | 0.29 | Ref | 0.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornell, K.; Alam, M.; Lyden, E.; Wood, L.; LeVan, T.D.; Nordgren, T.M.; Bailey, K.; Hanson, C. Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients 2019, 11, 317. https://doi.org/10.3390/nu11020317
Cornell K, Alam M, Lyden E, Wood L, LeVan TD, Nordgren TM, Bailey K, Hanson C. Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients. 2019; 11(2):317. https://doi.org/10.3390/nu11020317
Chicago/Turabian StyleCornell, Kasey, Morshed Alam, Elizabeth Lyden, Lisa Wood, Tricia D. LeVan, Tara M. Nordgren, Kristina Bailey, and Corrine Hanson. 2019. "Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012" Nutrients 11, no. 2: 317. https://doi.org/10.3390/nu11020317
APA StyleCornell, K., Alam, M., Lyden, E., Wood, L., LeVan, T. D., Nordgren, T. M., Bailey, K., & Hanson, C. (2019). Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients, 11(2), 317. https://doi.org/10.3390/nu11020317