A Nutrition Education Intervention Using NOVA Is More Effective Than MyPlate Alone: A Proof-of-Concept Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Intervention
2.2. Survey
2.3. Statistical Analysis
2.4. Institutional Review Board
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Center for Health Statistics. Health, United States, 2016: With Chartbook on Long-term Trends in Health; NCHS: Hyattsville, MD, USA, 2017. [Google Scholar]
- National Center for Chronic Disease Prevention and Health Promotion Division of Diabetes Translation. National Diabetes Statistics Report, 2017. Estimates of Diabetes and Its Burden in the United States; CDC: Atlanta, GA, USA, 2017. [Google Scholar]
- Cawley, J.; Meyerhoefer, C. The medical care costs of obesity: An instrumental variables approach. J. Health Econ. 2012, 31, 219–230. [Google Scholar] [CrossRef] [PubMed]
- The Trust for America’s Health and the Robert Wood Johnson Foundation. The Healthcare Costs of Obesity. Available online: https://stateofobesity.org/healthcare-costs-obesity/ (accessed on 10 December 2017).
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation on Diet Nutrition and the Prevention of Chronic Diseases; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Nishida, C.; Uauy, R.; Kumanyika, S.; Shetty, P. The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: Process, product and policy implications. Public Health Nutr. 2004, 7, 245. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; 2015. Available online: http://health.gov/dietaryguidelines/2015/ (accessed on 21 March 2018).
- US Department of Agriculture Center for Nutrition Policy and Promotion. MyPlate/MiPlate. Available online: https://www.cnpp.usda.gov/MyPlate (accessed on 6 December 2018).
- Moore, L.V.; Thompson, F.E. Adults Meeting Fruit and Vegetable Intake Recommendations—United States, 2013. Morb. Mortal. Wkly. Rep. 2013, 64, 709–713. [Google Scholar]
- Jackson, S.L.; King, S.M.C.; Zhao, L.; Cogswell, M.E. Prevalence of Excess Sodium Intake in the United State —NHANES, 2009–2012. Morb. Mortal. Wkly. Rep. 2016, 64, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Rosinger, A.; Herrick, K.; Gahche, J. Sugar-Sweetened Beverage Consumption Among U.S. Adults, 2011–2014. NCHS Data Brief, No. 270; National Center for Health Statistics: Hyattsville, MD, USA, 2017. [Google Scholar]
- Martinez, S. New Products. United States Department of Agriculture; Economic Research Service: Washington, DC, USA, 2017; Volume 2017. [Google Scholar]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Steele, E.M.; Baraldi, L.G.; da Costa Louzada, M.L.; Moubarac, J.-C.; Mozaffarian, D.; Monteiro, C.A. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef]
- Tseng, M.; Neill, D.B.; Teaford, S.F.; Nazmi, A. Alternative MyPlate Menus: Effects of Ultra-Processed Foods on Saturated Fat, Sugar, and Sodium Content. J. Nutr. Educ. Behav. 2017, 50, 258–266. [Google Scholar] [CrossRef]
- Latasa, P.; Louzada, M.; Martinez Steele, E.; Monteiro, C.A. Added sugars and ultra-processed foods in Spanish households (1990–2010). Eur. J. Clin. Nutr. 2017. [Google Scholar] [CrossRef]
- Louzada, M.L.d.C.; Ricardo, C.Z.; Steele, E.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr. 2017, 21, 94–102. [Google Scholar] [CrossRef]
- Julia, C.; Martinez, L.; Alles, B.; Touvier, M.; Hercberg, S.; Mejean, C.; Kesse-Guyot, E. Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Sante study. Public Health Nutr. 2018, 21, 27–37. [Google Scholar] [CrossRef]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalan, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Melo, I.S.V.; Costa, C.; Santos, J.; Santos, A.F.D.; Florencio, T.; Bueno, N.B. Consumption of minimally processed food is inversely associated with excess weight in adolescents living in an underdeveloped city. PLoS ONE 2017, 12, e0188401. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Hemmingsson, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr. 2015, 18, 3096–3107. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.L.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.; Canella, D.S.; Moubarac, J.C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F. , et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef]
- Mendonca, R.D.; Lopes, A.C.; Pimenta, A.M.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Ultra-Processed Food Consumption and the Incidence of Hypertension in a Mediterranean Cohort: The Seguimiento Universidad de Navarra Project. Am. J. Hypertens 2017, 30, 358–366. [Google Scholar] [CrossRef]
- Lavigne-Robichaud, M.; Moubarac, J.-C.; Lantagne-Lopez, S.; Johnson-Down, L.; Batal, M.; Sidi, E.A.L.; Lucas, M. Diet quality indices in relation to metabolic syndrome in an Indigenous Cree (Eeyouch) population in northern Québec, Canada. Public Health Nutr. 2017, 21, 172–180. [Google Scholar] [CrossRef]
- Crino, M.; Barakat, T.; Trevena, H.; Neal, B. Systematic Review and Comparison of Classification Frameworks Describing the Degree of Food Processing. Nutr. Food Technol. 2017, 3, 138. [Google Scholar]
- Mancino, L.; Tood, J.; Guthrie, J.F.; Lin, B.-H. How Food Away From Home Affects Children’s Diet Quality; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2010.
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; Castro, I.R.R.d.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Cad. De Saude Publica 2010, 26, 2039–2049. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kolodinsky, J.; Harvey-Berino, J.R.; Berlin, L.; Johnson, R.K.; Reynolds, T.W. Knowledge of Current Dietary Guidelines and Food Choice by College Students: Better Eaters Have Higher Knowledge of Dietary Guidance. J. Acad. Nutr. Diet. 2007, 107, 1409–1413. [Google Scholar] [CrossRef]
- Worsley, A. Nutrition knowledge and food consumption: Can nutrition knowledge change food behaviour? Asia Pac. J. Clin. Nutr. 2002, 11, S579–S585. [Google Scholar] [CrossRef]
- Sharma, S.V.; Gernand, A.D.; Day, R.S. Nutrition Knowledge Predicts Eating Behavior of All Food Groups Except Fruits and Vegetables among Adults in the Paso del Norte Region: Qué Sabrosa Vida. J. Nutr. Educ. Behav. 2008, 40, 361–368. [Google Scholar] [CrossRef]
- Chrisman, M.; Diaz Rios, L.K. Evaluating MyPlate After 8 Years: A Perspective. J. Nutr. Educ. Behav. 2019, 51, 899–903. [Google Scholar] [CrossRef]
- Tagtow, A.; Raghavan, R. Assessing the Reach of MyPlate using National Health and Nutrition Examination Survey Data. J. Acad. Nutr. Diet. 2017, 117, 181–183. [Google Scholar] [CrossRef]
- Uruakpa, F.O.; Moeckly, B.G.; Fulford, L.D.; Hollister, M.N.; Kim, S. Awareness and use of MyPlate Guidelines in Making Food Choices. Procedia Food Sci. 2013, 2, 180–186. [Google Scholar] [CrossRef]
Food Item | MyPlate Food Groups 1 and Limit Status 2 | NOVA Category 3 | |||||
---|---|---|---|---|---|---|---|
Fruit | Veg | Grains | Protein | Dairy | Limit * | ||
Cooked beef steak, plain | X | fat | 1 | ||||
Olive oil | fat | 2 | |||||
Fruit salad, plain | X | 1 | |||||
Baked Potato, homemade plain | X | 1 | |||||
Vegetable chips, Terra Mediterranean | X | 4 | |||||
Canned mixed vegetables, Del Monte | X | salt | 4 | ||||
Low-fat yogurt, apricot, fruit on bottom, Chobani | X | sugar | 4 | ||||
Granola bar, Chewy Chocolate Chip, Quaker | X | fat, sugar | 4 | ||||
Spinach lasagna, homemade | X | X | X | fat, salt | 3 | ||
Butter, unsalted | fat | 2 | |||||
Spaghetti with meat sauce, Lean Cuisine | X | X | X | X | salt | 4 | |
French fries, McDonald’s | X | fat | 4 | ||||
Peanut butter, Peter Pan | X | fat | 4 | ||||
Blueberry muffin, Starbuck’s | X | X | fat, sugar | 4 | |||
Canned tomato paste, Del Monte | X | 1 | |||||
Crackers, Triscuit | X | salt | 3 | ||||
Crackers, Wheat Thins | X | salt, sugar | 4 | ||||
Whole grain bread, Ezekiel | X | 4 | |||||
Zucchini bread, homemade | X | sugar | 3 | ||||
Dried apricots, plain | X | 1 | |||||
Plain organic yogurt, Stonyfield | X | fat | 1 | ||||
Mixed nuts, plain | X | fat | 1 | ||||
Black beans, cooked, plain | X | X | 1 | ||||
Salmon, smoked | X | salt | 3 | ||||
Sugar, Turbinado in the Raw | sugar | 2 |
Survey Question (Q) Item by Intervention Group | Baseline, % Correct (SD) | Follow-Up, % Correct (SD) | % pt. Change (95% CI) | p-Value |
---|---|---|---|---|
MyPlate Intervention (n = 57) | ||||
Q1: MyPlate food groups | 59.9 (11.3) | 62.0 (12.2) | +2.2 (−1.3, 5.7) | 0.2 |
Q2: MyPlate limit status | 61.7 (11.4) | 65.3 (10.7) | +3.6 (0.6, 6.7) | 0.02 |
Q3: NOVA categories | 34.1 (15.5) | 36.6 (14.3) | +2.5 (−0.8,5.9) | 0.1 |
MyPlate + NOVA intervention (n = 66) | ||||
Q1: MyPlate food groups | 60.7 (12.4) | 64.7 (9.4) | +4.0 (1.0, 7.0) | 0.01 |
Q2: MyPlate limit status | 64.4 (12.7) | 70.4 (10.9) | +6.0 (3.2, 9.0) | < 0.001 |
Q3: NOVA categories | 34.7 (14.6) | 45.8 (15.6) | +11.1 (6.8, 15.3) | < 0.001 |
Control (n = 51) | ||||
Q1: MyPlate food groups | 63.1 (9.2) | 59.8 (12.9) | −3.2 (−6.0, 0.0) | 0.03 |
Q2: MyPlate limit status | 64.2 (12.6) | 61.4 (15.0) | −2.8 (−6.6, 0.9) | 0.1 |
Q3: NOVA categories | 36.3 (11.7) | 38.8 (14.1) | +2.5 (0.0, 5.0) | 0.05 |
Factor | Classification Question | ||
---|---|---|---|
MyPlate | Limit Status | NOVA | |
Intervention | 0.0010 | 0.0007 | <0.0001 |
Sex | 0.5967 | 0.8745 | 0.4105 |
Intervention * Sex | 0.6712 | 0.0246 | 0.4431 |
Class | <0.0001 | 0.7991 | 0.0016 |
Intervention | Classification Question | ||
---|---|---|---|
MyPlate | Limit Status | NOVA | |
MyPlate | 0.19 ab | 0.47 a | 0.15 b |
MyPlate + NOVA | 0.50 a | 0.52 a | 1.03 a |
Control | −0.51 b | −0.30 b | 0.24 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazmi, A.; Tseng, M.; Robinson, D.; Neill, D.; Walker, J. A Nutrition Education Intervention Using NOVA Is More Effective Than MyPlate Alone: A Proof-of-Concept Randomized Controlled Trial. Nutrients 2019, 11, 2965. https://doi.org/10.3390/nu11122965
Nazmi A, Tseng M, Robinson D, Neill D, Walker J. A Nutrition Education Intervention Using NOVA Is More Effective Than MyPlate Alone: A Proof-of-Concept Randomized Controlled Trial. Nutrients. 2019; 11(12):2965. https://doi.org/10.3390/nu11122965
Chicago/Turabian StyleNazmi, Aydin, Marilyn Tseng, Derrick Robinson, Dawn Neill, and John Walker. 2019. "A Nutrition Education Intervention Using NOVA Is More Effective Than MyPlate Alone: A Proof-of-Concept Randomized Controlled Trial" Nutrients 11, no. 12: 2965. https://doi.org/10.3390/nu11122965
APA StyleNazmi, A., Tseng, M., Robinson, D., Neill, D., & Walker, J. (2019). A Nutrition Education Intervention Using NOVA Is More Effective Than MyPlate Alone: A Proof-of-Concept Randomized Controlled Trial. Nutrients, 11(12), 2965. https://doi.org/10.3390/nu11122965