Improvements in Glycemic, Micronutrient, and Mineral Indices in Arab Adults with Pre-Diabetes Post-Lifestyle Modification Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Intervention
2.3. Questionnaire Design and Output
2.4. Determination of Biochemical Parameters
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Groups
3.2. BMI, Glycemic Profile, and Physical Activity Changes of Study Groups Overtime
3.3. Changes in Macro/Micronutrient Intakes Overtime
3.4. Changes in Dietary Compliance of the Study Groups Overtime
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Gregg, E. Global economic burden of diabetes and its implications. Lancet Diabetes Endocrinol. 2017, 5, 404–405. [Google Scholar] [CrossRef]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Kahn, R. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar]
- The Lancet. Prediabetes and the potential to prevent diabetes. Lancet 2012, 379, 2213. Available online: http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2812%2960960-X/fulltext (accessed on 1 January 2019). [CrossRef]
- Alotaibi, A.; Perry, L.; Gholizadeh, L.; Al-Ganmi, A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J. Epidemiol. Glob. Health 2017, 7, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Boutayeb, A.; Boutayeb, W.; Lamlili, M.E.N.; Boutayeb, S. Indirect cost of Diabetes in the Arab Region. Int. J. Diabetol. Vasc. Dis. Res. 2013, 1, 24–28. [Google Scholar]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef]
- Group, D.P.P.R. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar]
- McLellan, K.C.P.; Wyne, K.; Villagomez, E.T.; Hsueh, W.A. Therapeutic interventions to reduce the risk of progression from prediabetes to type 2 diabetes mellitus. Ther. Clin. Risk Manag. 2014, 10, 173. [Google Scholar]
- Cardona-Morrell, M.; Rychetnik, L.; Morrell, S.L.; Espinel, P.T.; Bauman, A. Reduction of diabetes risk in routine clinical practice: Are physical activity and nutrition interventions feasible and are the outcomes from reference trials replicable? A systematic review and meta-analysis. BMC Public Health 2010, 10, 653. [Google Scholar] [CrossRef]
- Johnson, M.; Jones, R.; Freeman, C.; Woods, H.B.; Gillett, M.; Goyder, E.; Payne, N. Can diabetes prevention programmes be translated effectively into real-world settings and still deliver improved outcomes? A synthesis of evidence. Diabet. Med. 2013, 30, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Kastorini, C.-M.; Panagiotakos, D.B. Dietary patterns and prevention of type 2 diabetes: From research to clinical practice; a systematic review. Curr. Diabetes Rev. 2009, 5, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, Z.; Azadbakht, L. How dietary patterns could have a role in prevention, progression, or management of diabetes mellitus? Review on the current evidence. J. Res. Med. Sci. 2012, 17, 694. [Google Scholar] [PubMed]
- Al-Khudairy, L.; Stranges, S.; Kumar, S.; Al-Daghri, N.; Rees, K. Dietary Factors and Type 2 Diabetes in the Middle East: What Is the Evidence for an Association?––A Systematic Review. Nutrients 2013, 5, 3871–3897. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Alfawaz, H.; Aljohani, N.J.; Al-Saleh, Y.; Wani, K.; Alnaami, A.M.; Alharbi, M.; Kumar, S. A 6-month “self-monitoring” lifestyle modification with increased sunlight exposure modestly improves vitamin D status, lipid profile and glycemic status in overweight and obese Saudi adults with varying glycemic levels. Lipids Health Dis. 2014, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Alfawaz, H.A.; Wani, K.; Alnaami, A.M.; Al-Saleh, Y.; Aljohani, N.J.; Al-Attas, O.S.; Alokail, M.S.; Kumar, S.; Al-Daghri, N.M. Effects of Different Dietary and Lifestyle Modification Therapies on Metabolic Syndrome in Prediabetic Arab Patients: A 12-Month Longitudinal Study. Nutrients 2018, 10, 383. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Khan, N.; Alkharfy, K.M.; Al-Attas, O.S.; Alokail, M.S.; Alfawaz, H.A.; Alothman, A.; Vanhoutte, P.M. Selected dietary nutrients and the prevalence of metabolic syndrome in adult males and females in Saudi Arabia: A pilot study. Nutrients 2013, 5, 4587–4604. [Google Scholar] [CrossRef]
- Bjorge-Schohl, B.; Johnston, C.S.; Trier, C.M.; Fleming, K.R. Agreement in participant-coded and investigator-coded food-record analysis in overweight research participants: An examination of interpretation bias. J. Acad. Nutr. Diet. 2014, 114, 796–801. [Google Scholar] [CrossRef]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006; Available online: https://www.nap.edu/catalog/11537/dietary-reference-intakes-the-essential-guide-to-nutrient-requirements (accessed on 5 January 2019).
- Peterson, C.M.; Thomas, D.M.; Blackburn, G.L.; Heymsfield, S.B. Universal equation for estimating ideal body weight and body weight at any BMI. Am. J. Clin. Nutr. 2016, 103, 1197–1203. [Google Scholar] [CrossRef]
- Medeiros, D.M. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Am. J. Clin. Nutr. 2007, 85, 924. [Google Scholar] [CrossRef]
- Bonora, E.; Formentini, G.; Calcaterra, F.; Lombardi, S.; Marini, F.; Zenari, L.; Saggiani, F.; Poli, M.; Perbellini, S.; Raffaelli, A.; et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: Prospective data from the Verona Diabetes Complications Study. Diabetes Care 2002, 25, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Woo, J.; Chan, R.; Sham, A.; Ho, S.; Tso, A.; Cheung, B.; Lam, T.H.; Lam, K. Relationship between dietary intake and the development of type 2 diabetes in a Chinese population: The Hong Kong Dietary Survey. Public Health Nutr. 2011, 14, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.; Foster-Schubert, K.E.; Imayama, I.; Kong, A.; Xiao, L.; Bain, C.; Campbell, K.L.; Wang, C.Y.; Duggan, C.R.; Ulrich, C.M.; et al. Dietary weight loss and exercise effects on insulin resistance in postmenopausal women. Am. J. Prev. Med. 2011, 41, 366–375. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care 2010, 33, 692. [Google Scholar]
- Spritzler, F. A low-carbohydrate, whole-foods approach to managing diabetes and prediabetes. Diabetes Spectr. 2012, 25, 238–243. [Google Scholar] [CrossRef]
- Rideout, T.C.; Marinangeli, C.P.; Martin, H.; Browne, R.W.; Rempel, C.B. Consumption of low-fat dairy foods for 6 months improves insulin resistance without adversely affecting lipids or bodyweight in healthy adults: A randomized free-living cross-over study. Nutr. J. 2013, 12, 56. [Google Scholar] [CrossRef]
- Ke, Q.; Chen, C.; He, F.; Ye, Y.; Bai, X.; Cai, L.; Xia, M. Association between dietary protein intake and type 2 diabetes varies by dietary pattern. Diabetol. Metab. Syndr. 2018, 10, 48. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Al-Hazzaa, H.M. The public health burden of physical inactivity in Saudi Arabia. J. Fam. Community Med. 2004, 11, 45. [Google Scholar]
- Sigal, R.J.; Kenny, G.P.; Wasserman, D.H.; Castaneda-Sceppa, C.; White, R.D. Physical activity/exercise and type 2 diabetes: A consensus statement from the American Diabetes Association. Diabetes Care 2006, 29, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar] [PubMed]
- Füzéki, E.; Banzer, W. Physical activity recommendations for health and beyond in currently inactive populations. Int. J. Environ. Res. Public Health 2018, 15, 1042. [Google Scholar] [CrossRef] [PubMed]
- Hession, M.; Rolland, C.; Kulkarni, U.; Wise, A.; Broom, J. Systematic review of randomized controlled trials of low-carbohydrate vs. low-fat/low-calorie diets in the management of obesity and its comorbidities. Obes. Rev. 2009, 10, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Buyken, A.E.; Mitchell, P.; Ceriello, A.; Brand-Miller, J. Optimal dietary approaches for prevention of type 2 diabetes: A life-course perspective. Diabetologia 2010, 53, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Priebe, M.G.; Binsbergenn, J.J.V.; Vos, R.D.; Vonk, R.J. Whole grain foods for the prevention of type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef] [PubMed]
- Marathe, C.S.; Reyner, C.K.; Jones, K.L.; Horowitz, M. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care 2013, 36, 1396–1405. [Google Scholar] [CrossRef] [Green Version]
- Schwab, U.; Lauritzen, L.; Tholstrup, T.; Haldorsson, T.I.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food Nutr. Res. 2014, 58, 25145. [Google Scholar] [CrossRef] [Green Version]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014, 37 (Suppl. 1), S120–S143. [Google Scholar] [CrossRef] [Green Version]
- Chehade, J.M.; Sheikh-Ali, M.; Mooradian, A.D. The role of micronutrients in managing diabetes. Diabetes Spectr. 2009, 22, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Franz, M.J.; Bantle, J.P.; Beebe, C.A.; Brunzell, J.D.; Chiasson, J.L.; Garg, A.; Holzmeister, L.A.; Hoogwerf, B.; Mayer-Davis, E.; Mooradian, A.D.; et al. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 2002, 25, 148–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanain, B.; Mooradian, A.D. Antioxidant vitamins and their influence in diabetes mellitus. Curr. Diabetes Rep. 2002, 2, 448–456. [Google Scholar] [CrossRef] [PubMed]
Parameters | GA (N = 75) | Guidance (N = 64) | p-Value |
---|---|---|---|
Age group (year) | |||
20–29 | 7 (9.5) | 2 (3.2) | |
30–39 | 34 (44.6) | 26 (41.3) | |
40–49 | 29 (39.2) | 34 (52.4) | NS |
50–60 | 5 (6.8) | 2 (3.2) | |
Marital Status | NS | ||
Married | 64 (85.1) | 56 (87.5) | |
Not married | 11 (14.9) | 8 (12.5) | |
Education | NS | ||
Elementary | 3 (4.1) | 2 (3.3) | |
Secondary | 2 (2.7) | 2 (3.3) | |
Undergraduate | 16 (21.9) | 17 (26.2) | |
Graduate | 47 (61.6) | 40 (53.9) | |
Post graduate | 7 (9.6) | 3 (3.5) | |
Sex | NS | ||
Male | 41 (54.7) | 26 (40.6) | |
Female | 34 (45.3) | 38 (59.4) | |
Overweight | 37 (49.3) | 24 (37.5) | NS |
Obese | 33 (44.0) | 34 (53.1) | |
Age (years) | 43.3 ± 6.7 | 43.4 ± 5.6 | NS |
BMI (kg/m2) | 30.4 ± 4.3 | 32.3 ± 6.2 | 0.04 |
Fasting Glucose (mmol/L) | 6.1 ± 0.8 | 6.0 ± 0.7 | NS |
HbA1C | 5.6 ± 0.8 | 5.6 ± 0.6 | NS |
Insulin (μU/mL) | 16.52 (15.7,18.1) | 16.80(16.5,20.3) | 0.06 |
HOMA-IR | 4.36 (4.1,4.8) | 4.51 (4.2,5.3) | 0.36 |
Parameters | GA (N = 75) | Guidance (N = 64) | Interaction p-Value | ||||
---|---|---|---|---|---|---|---|
Baseline | 6 months | p | Baseline | 6 months | p | ||
BMI | 30.42 ± 4.3 | 30.83 ± 4.3 | 0.02 | 32.34 ± 6.2 | 31.77 ± 6.7 | 0.002 | 0.53 |
Fasting glucose (mmol/L) | 6.06 ± 0.8 | 5.87 ± 1.1 | 0.15 | 6.03 ± 0.7 | 5.70 ± 1.0 | 0.01 | 0.005 |
Hba1c (%) | 5.62 ± 0.8 | 5.41 ± 1.1 | 0.07 | 5.61 ± 0.6 | 5.35 ± 1.0 | 0.03 | 0.005 |
Insulin (μU/mL) | 16.52 (15.7,18.1) | 15.98 (15.8,18.4) | 0.02 | 16.80 (16.5,20.3) | 16.05 (15.4,18.8) | 0.003 | 0.06 |
HOMA-IR | 4.36 (4.1, 4.8) | 4.19 (3.8, 4.8) | 0.07 | 4.51(4.2, 5.2) | 4.09 (3.4, 4.7) | <0.01 | 0.034 |
Moderate Physical Exercise/week | 2.00 (1.3, 3.0) | 2.00 (1.5, 2.5) | 0.89 | 2.3 (1.5, 3.0) | 2.6 (1.3, 3.6) | 0.029 | 0.07 |
Vigorous Physical Exercise/week | 0.50 (0.3, 1.4) | 0.60 (0.3, 1.3) | 0.78 | 0.40 (0.2, 0.9) | 1.40 (1.2, 1.6) | <0.01 | 0.017 |
Parameters | GA (N = 75) | Guidance (N = 64) | Interaction p-Value | ||||
---|---|---|---|---|---|---|---|
Baseline | 6 months | p | Baseline | 6 months | p | ||
Energy (kcal/day) | 2285.2 (2025, 2628) | 2251.8 (1957, 2828) | 0.97 | 2230.7 (1982, 2814) | 2042.4 (1728, 2457) | 0.11 | 0.20 |
Macronutrients | |||||||
Carbohydrate (g/day) | 251.0 (198.7, 301.9) | 243.1 (198.5, 326.3) | 0.74 | 229.5 (197.2, 289.1) | 205.3 (149.0, 263.8) | 0.046 | 0.01 |
Total Fiber (g/day) | 8.4 (6.2, 11.9) | 13.4 (7.5, 17.5) | 0.001 | 8.3 (5.0, 10.9) | 13.1 (11.1, 16.6) | <0.001 | 0.45 |
Protein (g/day) | 90.2 (70.2, 107.0) | 91.4 (71.7, 106.8) | 0.78 | 91.4 (71.7, 103.8) | 82.5 (70.2, 95.2) | 0.08 | 0.05 |
Total Fat (g/day) | 72.8 (63.1, 92.9) | 69.4 (60.3, 91.9) | 0.23 | 70.0 (59.5, 84.3) | 63.2 (57.0, 75.5) | 0.12 | 0.06 |
SF (g/day) | 25.4 (20.8, 33.6) | 25.4 (19.8, 33.6) | 0.61 | 25.5 (19.0, 32.1) | 20.3 (14.1, 31.1) | 0.09 | 0.04 |
MUFA (g/day) | 25.1 (23.2, 31.7) | 25.0 (20.6, 33.5) | 0.53 | 25.0 (20.2, 29.8) | 24.4 (18.7, 29.8) | 0.49 | 0.12 |
PUFA (g/day) | 17.4 (15.4, 23.6) | 18.8 (15.4, 24.5) | 0.21 | 19.8 (16.1, 24.2) | 19.8 (16.1, 24) | 0.94 | 0.14 |
Micronutrients | |||||||
Vit. A (μg RAE/d) | 283.3 (253.2, 525.5) | 370.4 (287.1, 504.1) | 0.26 | 226.5 (139.9, 461.3) | 437.5 (310.6, 547.1) | 0.001 | 0.65 |
Thiamine (mg/day) | 0.44 (0.4, 0.6) | 0.49 (0.4, 0.7) | 0.16 | 0.31 (0.2, 0.4) | 0.66 (0.5, 0.8) | <0.001 | 0.81 |
Riboflavin (mg/day) | 0.76 (0.6, 1) | 0.80 (0.6, 1.2) | 0.09 | 0.74 (0.6, 1.0) | 1.1 (0.9, 1.5) | <0.001 | 0.01 |
Niacin (mg/day) | 6.8 (5.4, 11.4) | 9.4 (6.7, 14.7) | 0.11 | 8.9 (5.5, 14.5) | 15.5 (12.1, 20.9) | <0.001 | <0.001 |
Vitamin B6 (mg/day) | 0.51 (0.4, 0.8) | 0.67 (0.5, 1) | 0.002 | 0.69 (0.5, 0.9) | 1.0 (0.8, 1.4) | <0.001 | <0.001 |
Folate (μg/day) | 95.8 (67.5, 130.8) | 115.3 (87.4, 168.6) | 0.001 | 85.8 (59.8, 121.3) | 154.0 (127.6, 188.8) | <0.001 | 0.18 |
Vitamin B12 (μg/day) | 1.5 (0.9, 2.2) | 1.7 (0.8, 2.5) | 0.69 | 1.7 (1.2, 3.3) | 2.7 (1.8, 3.6) | 0.018 | 0.041 |
Vitamin C (mg/day) | 48.9 (20.3, 70.2) | 45.6 (25.6, 61.9) | 0.68 | 38.0 (19.7, 49) | 47.8 (36.3, 79.6) | <0.001 | 0.77 |
Vitamin E (mg/day) | 3.8 (2.9, 5.8) | 5.2 (3.7, 7.5) | 0.001 | 4.6 (3.5, 5.7) | 7.1 (5.4, 9.4) | <0.001 | 0.003 |
Minerals | |||||||
Calcium (mg/day) | 449.2 (313.5, 636.7) | 514.8 (349.2, 724.8) | 0.68 | 350.1 (243.5, 518.2) | 460.7 (366.7, 667.5) | 0.005 | 0.12 |
Phosphorus (mg/day) | 535.8 (379, 740.5) | 629.1 (518.6, 820.6) | 0.037 | 652.8 (426.3, 886.0) | 914.2 (732.9, 1096.6) | <0.001 | <0.001 |
Magnesium (mg/day) | 146.2 (125.6, 199.3) | 192.8 (156.6, 252.7) | 0.001 | 167.3 (129.5, 215.4) | 282.1 (227.7, 354.5) | <0.001 | <0.001 |
Iron (mg/day) | 8.0 (6.2, 10.0) | 9.1 (6.9, 11.2) | 0.06 | 7.1 (5.1, 10.8) | 13.8 (11.6, 18) | <0.001 | 0.01 |
Copper (μg/day) | 480 (440, 780) | 650 (490, 890) | 0.009 | 490 (345, 735) | 900 (780, 1130) | <0.001 | 0.03 |
Sodium (g/day) | 1.9 (1.4, 2.7) | 2.2 (1.4, 2.9) | 0.32 | 2.0 (1.5, 2.5) | 3.0 (2.3, 3.4) | <0.001 | 0.01 |
Potassium (g/day) | 1.4 (1.2, 1.8) | 1.8 (1.5, 2.2) | 0.001 | 1.4 (1.1, 2.1) | 2.6 (1.8, 3.0) | <0.001 | 0.01 |
Zinc (mg/day) | 6.5 (5.2, 7.8) | 6.5 (5.3, 7.5) | 0.62 | 6.3 (5.1, 6.7) | 6.4 (5.4, 7.4) | 0.46 | 0.63 |
Nutrients | RDI (M/F) | GA (N = 75) | Guidance (N = 64) | ||||
---|---|---|---|---|---|---|---|
B | ES | p | B | ES | p | ||
Total Energy | ≤RDI_Energy 1 | 40.0 | 38.7 | 1.00 | 39.1 | 50.0 | 0.28 |
Macronutrients | |||||||
Protein | ≤(0.8xBody weight) * | 8.0 | 12.0 | 0.55 | 20.3 | 23.4 | 0.06 |
Carbohydrate | ≤35% of RDI Energy * | 17.3 | 25.3 | 0.29 | 20.3 | 46.9 | 0.003 |
Total Fiber | ≥ 25 g/day * | 2.7 | 21.3 | 0.001 | 3.1 | 21.9 | 0.002 |
Total Fat | ≤25% of RDI Energy * | 28.0 | 33.3 | 0.56 | 31.3 | 39.1 | 0.38 |
Micronutrients | |||||||
Vitamin A | ≥ 900/700 μg/day ₤ | 8.0 | 8.0 | 1.00 | 6.3 | 12.5 | 0.39 |
Thiamine | ≥ 1.2/1.1 mg/day | 1.3 | 4.0 | 0.64 | 4.7 | 6.3 | 1.00 |
Riboflavin | ≥ 1.2/1.1 mg/day | 15.6 | 28.1 | 0.12 | 10.7 | 40.0 | <0.01 |
Niacin | ≥ 16/14 mg/day ₤ | 20.3 | 34.4 | 0.06 | 14.7 | 41.3 | <0.01 |
Vitamin B6 | ≥ 1.3,1.7#/1.3,1.5# mg/day ₤ | 10.9 | 17.2 | 0.45 | 6.7 | 21.3 | 0.01 |
Folate | ≥ 400 μg/day *,₤ | 0.0 | 1.3 | - | 0.0 | 1.6 | - |
Vitamin B12 | ≥ 2.4 μg/day * | 34.4 | 40.6 | 0.50 | 28.0 | 45.3 | 0.04 |
Vitamin C | ≥ 90/75 mg/day ₤ | 18.7 | 21.3 | 0.83 | 7.8 | 21.9 | 0.02 |
Vitamin E | ≥ 15 mg/day *,₤ | 0.0 | 0.0 | - | 0.0 | 0.0 | - |
Minerals | |||||||
Calcium | ≥ 1000/1000,1200 # mg/day ₤ | 6.7 | 6.7 | 1.00 | 4.7 | 4.7 | 1.00 |
Phosphorus | ≥ 700 mg/day *,₤ | 38.7 | 62.7 | 0.003 | 40.6 | 56.3 | 0.11 |
Magnesium | ≥ 420/320 mg/day ₤ | 4.0 | 12.0 | 0.15 | 4.7 | 18.8 | 0.02 |
Iron | ≥ 8/18,8 # mg/day ₤ | 22.7 | 40.0 | 0.02 | 34.4 | 54.7 | 0.03 |
Copper | ≥ 900 μg/day *,₤ | 18.8 | 34.4 | 0.08 | 13.3 | 37.3 | <0.01 |
Sodium | ≤(1.5,1.3#,2.3₤) * g/day | 29.3 | 12.0 | 0.007 | 29.7 | 21.9 | 0.38 |
Potassium | ≥ 4.7 * g/day | 0.0 | 0.0 | - | 0.0 | 0.0 | - |
Zinc | ≥ 11/8 mg/day ₤ | 14.7 | 6.7 | 0.15 | 4.7 | 9.4 | 0.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfawaz, H.; Naeef, A.F.; Wani, K.; Khattak, M.N.K.; Sabico, S.; Alnaami, A.M.; Al-Daghri, N.M. Improvements in Glycemic, Micronutrient, and Mineral Indices in Arab Adults with Pre-Diabetes Post-Lifestyle Modification Program. Nutrients 2019, 11, 2775. https://doi.org/10.3390/nu11112775
Alfawaz H, Naeef AF, Wani K, Khattak MNK, Sabico S, Alnaami AM, Al-Daghri NM. Improvements in Glycemic, Micronutrient, and Mineral Indices in Arab Adults with Pre-Diabetes Post-Lifestyle Modification Program. Nutrients. 2019; 11(11):2775. https://doi.org/10.3390/nu11112775
Chicago/Turabian StyleAlfawaz, Hanan, Alsoodeeri Fahadah Naeef, Kaiser Wani, Malak Nawaz Khan Khattak, Shaun Sabico, Abdullah M. Alnaami, and Nasser M. Al-Daghri. 2019. "Improvements in Glycemic, Micronutrient, and Mineral Indices in Arab Adults with Pre-Diabetes Post-Lifestyle Modification Program" Nutrients 11, no. 11: 2775. https://doi.org/10.3390/nu11112775
APA StyleAlfawaz, H., Naeef, A. F., Wani, K., Khattak, M. N. K., Sabico, S., Alnaami, A. M., & Al-Daghri, N. M. (2019). Improvements in Glycemic, Micronutrient, and Mineral Indices in Arab Adults with Pre-Diabetes Post-Lifestyle Modification Program. Nutrients, 11(11), 2775. https://doi.org/10.3390/nu11112775