Effect of Dietary Sodium and Potassium Intake on the Mobilization of Bone Lead among Middle-Aged and Older Men: The Veterans Affairs Normative Aging Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Population
2.3. Blood Lead and Bone Lead Measurements
2.4. Urinary Lead, Sodium, and Potassium Measurements
2.5. Covariates
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nordberg, G.; Fowler, B.; Nordberg, M. Handbook on the Toxicology of Metals; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Pell, M.B.; Schneyer, J. Reuters Finds Lead Levels Higher than Flint’s in Thousands of Locales. Reuters Investigates. 2016. Available online: https://www.reuters.com/investigates/special-report/usa-lead-testing/ (accessed on 30 June 2018).
- Calafat, A.M. The U.S. National Health and Nutrition Examination Survey and human exposure to environmental chemicals. Int. J. Hyg. Environ. Heal. 2012, 215, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.S.I.; Mossman, D.B. Lead concentrations in human tissues. Occup. Environ. Med. 1970, 27, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Payton, M.; Riggs, K.M.; Spiro, A.; Weiss, S.T.; Hu, H. Relations of bone and blood lead to cognitive function: The VA Normative Aging Study. Neurotoxicol. Teratol. 1998, 20, 19–27. [Google Scholar] [CrossRef]
- Park, S.K.; Elmarsafawy, S.; Mukherjee, B.; Spiro, A.; Vokonas, P.S.; Nie, H.; Weisskopf, M.G.; Schwartz, J.; Hu, H. Cumulative lead exposure and age-related hearing loss: The VA Normative Aging Study. Hear. Res. 2010, 269, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Rotnitzky, A.; Sparrow, D.; Weiss, S.T.; Wager, C.; Hu, H. A Longitudinal Study of Low-Level Lead Exposure and Impairment of Renal Function. JAMA 1996, 275, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Wang, X.; Weisskopf, M.G.; Sparrow, D.; Schwartz, J.; Hu, H.; Park, S.K. Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study. PLoS ONE 2016, 11, e0161472. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Rauch, S.; Auinger, P.; Allen, R.W.; Hornung, R.W. Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Heal. 2018, 3, 177–184. [Google Scholar] [CrossRef]
- Patrick, L. Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern. Med. Rev. J. Clin. Ther. 2006, 11, 2–22. [Google Scholar]
- Cake, K.M.; Bowins, R.J.; Vaillancourt, C.; Gordon, C.L.; McNutt, R.H.; Laporte, R.; Webber, C.E.; Chettle, D.R. Partition of circulating lead between serum and red cells is different for internal and external sources of lead. Am. J. Ind. Med. 1996, 29, 440–445. [Google Scholar] [CrossRef]
- Hernandez-Avila, M.; Smith, D.; Meneses, F.; Sanín, L.H.; Hu, H. The Influence of Bone and Blood Lead on Plasma Lead Levels in Environmentally Exposed Adults. Environ. Heal. Perspect. 1998, 106, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Leggett, R.W. An Age-Specific Kinetic Model of Lead Metabolism in Humans. Environ. Heal. Perspect. 1993, 101, 598–616. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, E. Plasma and Blood Lead Concentrations, Lead Absorption, and Lead Excretion in Nonhuman Primates. Toxicol. Appl. Pharm. 1996, 138, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Tsaih, S.-W.; Korrick, S.; Schwartz, J.; Lee, M.-L.T.; Amarasiriwardena, C.; Aro, A.; Sparrow, D.; Hu, H. Influence of Bone Resorption on the Mobilization of Lead from Bone among Middle-Aged and Elderly Men: The Normative Aging Study. Environ. Heal. Perspect. 2001, 109, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Wilker, E.; Korrick, S.; Nie, L.H.; Sparrow, D.; Vokonas, P.; Coull, B.; Wright, R.O.; Schwartz, J.; Hu, H. Longitudinal changes in bone lead levels: The VA Normative Aging Study. J. Occup. Environ. Med. 2011, 53, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Tsaih, S.-W.; Schwartz, J.; Lee, M.-L.T.; Amarasiriwardena, C.; Aro, A.; Sparrow, D.; Hu, H. The Independent Contribution of Bone and Erythrocyte Lead to Urinary Lead among Middle-Aged and Elderly Men: The Normative Aging Study. Environ. Heal. Perspect. 1999, 107, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Schwartz, J.; Mahaffey, K. Lead and osteoporosis: Mobilization of lead from bone in postmenopausal women. Environ. Res. 1988, 47, 79–94. [Google Scholar] [CrossRef]
- Cheng, Y.; Schwartz, J.; Sparrow, D.; Aro, A.; Weiss, S.T.; Hu, H. Bone lead and blood lead levels in relation to baseline blood pressure and the prospective development of hypertension: The Normative Aging Study. Am. J. Epidemiol. 2001, 153, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Weisskopf, M.G.; Sparrow, D.; Hu, H.; Power, M.C. Biased Exposure—Health Effect Estimates from Selection in Cohort Studies: Are Environmental Studies at Particular Risk? Environ. Heal. Perspect. 2015, 123, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Šarić, M.; Piasek, M.; Blanuša, M.; Kostial, K.; Ilich, J.Z. Sodium and calcium intakes and bone mass in rats revisited. Nutrients 2005, 21, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Bedford, J.L.; Barr, S.I. Higher Urinary Sodium, a Proxy for Intake, Is Associated with Increased Calcium Excretion and Lower Hip Bone Density in Healthy Young Women with Lower Calcium Intakes. Nutrients 2011, 3, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Moseley, K.F.; Weaver, C.M.; Appel, L.; Sebastian, A.; Sellmeyer, D.E. Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J. Bone Miner. Res. 2013, 28, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.T.; He, J.; Chen, G.D.; Wang, C.; Qiu, R.; Chen, Y.M. The association between urinary sodium to potassium ratio and bone density in middle-aged Chinese adults. Osteoporos. Int. 2017, 28, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, M.E.; Loria, C.M.; Terry, A.L.; Zhao, L.; Wang, C.-Y.; Chen, T.-C.; Wright, J.D.; Pfeiffer, C.M.; Merritt, R.; Moy, C.S.; et al. Estimated 24-Hour Urinary Sodium and Potassium Excretion in US Adults. JAMA 2018, 319, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Aro, A.; Payton, M.; Korrick, S.; Sparrow, D.; Weiss, S.T.; Rotnitzky, A. The Relationship of Bone and Blood Lead to Hypertension. JAMA 1996, 275, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Aro, A.; Rotnitzky, A. Bone Lead Measured by X-Ray Fluorescence: Epidemiologic Methods. Environ. Heal. Perspect. 1995, 103, 105. [Google Scholar]
- Hu, H.; Rabinowitz, M.; Smith, D. Bone Lead as a Biological Marker in Epidemiologic Studies of Chronic Toxicity: Conceptual Paradigms. Environ. Heal. Perspect. 1998, 106, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, D.; O’Connor, G.T.; Rosner, B.; Weiss, S.T.; DeAmario, W. the technical assistance of S.L. Methacholine Airway Responsiveness and 24-Hour Urine Excretion of Sodium and Potassium: The Normative Aging Study. Am. Rev. Respir. Dis. 1991, 144, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Payton, M.; Korrick, S.; Aro, A.; Sparrow, D.; Weiss, S.T.; Rotnitzky, A. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am. J. Epidemiol. 1996, 144, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Willett, W.C.; Schwartz, J.; Sparrow, D.; Weiss, S.; Hu, H. Relation of nutrition to bone lead and blood lead levels in middle-aged to elderly men. The Normative Aging Study. Am. J. Epidemiol. 1998, 147, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, N.; Tucker, K.L.; Weisskopf, M.G.; Sparrow, D.; Hu, H.; Park, S.K. A Western Diet Pattern Is Associated with Higher Concentrations of Blood and Bone Lead among Middle-Aged and Elderly Men. J. Nutr. 2017, 147, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Wang, X.; Tucker, K.L.; Weisskopf, M.G.; Sparrow, D.; Hu, H.; Park, S.K. Dietary patterns, bone lead and incident coronary heart disease among middle-aged to elderly men. Environ. Res. 2018, 168, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.A.; Hwang, J.-Y.; Kim, H.; Kim, K.N.; Ha, E.-H.; Park, H.; Ha, M.; Kim, Y.; Hong, Y.-C.; Chang, N. Relationship between maternal sodium intake and blood lead concentration during pregnancy. Br. J. Nutr. 2013, 109, 853–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, S.C.; Chen, Y.-M.; Woo, J.L.F.; Leung, S.S.F.; Lam, T.H.; Janus, E.D. Sodium is the Leading Dietary Factor Associated with Urinary Calcium Excretion in Hong Kong Chinese Adults. Osteoporos. Int. 2001, 12, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Jeon, J.-H.; Choi, Y.-K.; Lee, W.-K.; Hwang, I.-R.; Kim, J.-G.; Lee, I.-K.; Park, K.-G. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008–2011. Endocrine 2015, 49, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Vafa, M.; Soltani, S.; Zayeri, F.; Niroomand, M.; Najarzadeh, A. The relationship between sodium intake and some bone minerals and osteoporosis risk assessment instrument in postmenopausal women. Med. J. Islam. Repub. Iran. 2016, 30, 377. [Google Scholar] [PubMed]
- Cohen, A.; Roe, F.J. Review of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt. Food Chem. Toxicol. 2000, 38, 237–253. [Google Scholar] [CrossRef]
- Goulding, A.; Campbell, D.R. Effects of oral loads of sodium chloride on bone composition in growing rats consuming ample dietary calcium. Miner. Electrolyte Metab. 1984, 10, 58–62. [Google Scholar] [PubMed]
- Goulding, A.; Gold, E. Effects of Dietary NaCl Supplementation on Bone Synthesis of Hydroxyproline, Urinary Hydroxyproline Excretion and Bone 45 Ca Uptake in the Rat. Horm. Metab. Res. 1988, 20, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Goulding, A.; Campbell, D. Dietary NaCl Loads Promote Calciuria and Bone Loss in Adult Oophorectomized Rats Consuming a Low Calcium Diet. J. Nutr. 1983, 113, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.L.-P.; Swaminathan, R. Effect of different amounts of sodium intake for 4 months on calcium metabolism in normal and oophorectomized rats. J. Bone Miner. Res. 2009, 8, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Goulding, A. Effects of dietary NaCl supplements on parathyroid function, bone turnover and bone-composition in rats taking restricted amounts of calcium. Miner. Electrolyte Metab. 1980, 4, 203–208. [Google Scholar]
- Zhu, K.; Devine, A.; Prince, R.L. The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporos. Int. 2009, 20, 335–340. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Marciniak, M.; Carney, C.; Markandu, N.D.; Anand, V.; Fraser, W.D.; Dalton, R.N.; Kaski, J.C.; MacGregor, G.A. Effects of Potassium Chloride and Potassium Bicarbonate on Endothelial Function, Cardiovascular Risk Factors, and Bone Turnover in Mild Hypertensives. Hypertensis 2010, 55, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Hannan, M.T.; Chen, H.; Cupples, L.A.; Wilson, P.W.; Kiel, D.P. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am. J. Clin. Nutr. 1999, 69, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.T.; Ottaway, J.H.; Todd, K.M.; Morris, R.C.; Sebastian, A. Improved Mineral Balance and Skeletal Metabolism in Postmenopausal Women Treated with Potassium Bicarbonate. N. Engl. J. Med. 1994, 330, 1776–1781. [Google Scholar]
- Marangella, M.; Di Stefano, M.; Casalis, S.; Berutti, S.; D’Amelio, P.; Isaia, G.C. Effects of Potassium Citrate Supplementation on Bone Metabolism. Calcif. Tissue Int. 2004, 74, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Bushinsky, D.A.; Riordon, D.R.; Chan, J.S.; Krieger, N.S. Decreased potassium stimulates bone resorption. Am. J. Physiol. Content 1997, 272, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Lemann, J.; Pleuss, J.; Gray, R.W.; Hoffmann, R.G. Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults. Kidney Int. 1991, 39, 973–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellmeyer, D.E.; Schloetter, M.; Sebastian, A. Potassium Citrate Prevents Increased Urine Calcium Excretion and Bone Resorption Induced by a High Sodium Chloride Diet. J. Clin. Endocrinol. Metab. 2002, 87, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Brunette, M.G.; Mailloux, J.; Lajeunesse, D. Calcium transport through the luminal membrane of the distal tubule. I. Interrelationship with sodium. Kidney Int. 1992, 41, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordin, B.E.C.; Need, A.G.; Morris, H.A.; Horowitz, M. The Nature and Significance of the Relationship between Urinary Sodium and Urinary Calcium in Women. J. Nutr. 1993, 123, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Brandis, M.; Keyes, J.; Windhager, E. Potassium-induced inhibition of proximal tubular fluid reabsorption in rats. Am. J. Physiol. Content 1972, 222, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Higashihara, E.; Kokko, J.P. Effects of aldosterone on potassium recycling in the kidney of adrenalectomized rats. Am. J. Physiol. Physiol. 1985, 248, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Unwin, R.; Capasso, G.; Giebisch, G.; Capasso, G. Potassium and sodium transport along the loop of Henle: Effects of altered dietary potassium intake. Kidney Int. 1994, 46, 1092–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H. Bone lead as a new biologic marker of lead dose: Recent findings and implications for public health. Environ. Heal. Perspect. 1998, 106, 961–967. [Google Scholar]
- Clarke, B. Normal Bone Anatomy and Physiology. Clin. J. Am. Soc. Nephrol. 2008, 3, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.R.; Osterloh, J.D.; Flegal, A.R. Use of Endogenous, Stable Lead Isotopes to Determine Release of Lead from the Skeleton. Environ. Heal. Perspect. 1996, 104, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Adrogué, H.J.; Madias, N.E. Sodium and Potassium in the Pathogenesis of Hypertension. N. Engl. J. Med. 2007, 356, 1966–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awata, H.; Linder, S.; Mitchell, L.E.; Delclos, G.L. Association of Dietary Intake and Biomarker Levels of Arsenic, Cadmium, Lead, and Mercury among Asian Populations in the United States: NHANES 2011–2012. Environ. Health Perspect. 2017, 125, 314–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manton, W. Total contribution of airborne lead to blood lead. Occup. Environ. Med. 1985, 42, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Attisha, M.; LaChance, J.; Sadler, R.C.; Champney Schnepp, A. Elevated Blood Lead Levels in Children Associated With the Flint Drinking Water Crisis: A Spatial Analysis of Risk and Public Health Response. Am. J. Public Health 2016, 106, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Aschengrau, A.; Beiser, A.; Bellinger, D.; Copenhafer, D.; Weitzman, M. Residential lead-based-paint hazard remediation and soil lead abatement: Their impact among children with mildly elevated blood lead levels. Am. J. Public Heal. 1997, 87, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, M.F.; Cheung, C.L.; Cheung, T.T.; Cheung, B.M.Y. Continual Decrease in Blood Lead Level in Americans: United States National Health Nutrition and Examination Survey 1999–2014. Am. J. Med. 2016, 129, 1213–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Total Population (n = 318) | Tertiles of 24-h Urinary Na/K Ratio | |||
---|---|---|---|---|---|
Low: <2.2 (n = 106) | Medium: 2.2–3.0 (n = 106) | High: >3.0 (n = 106) | |||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p-value 1 | |
Age, years | 66.6 ± 7.0 | 66.9 ± 7.3 | 67.1 ± 6.7 | 65.8 ± 7.0 | 0.33 |
BMI, kg/m2 | 27.7 ± 3.9 | 26.6 ± 3.5 | 28.2 ± 4.2 | 28.2 ± 3.8 | 0.003 |
Urinary lead 2 (μg/day) | 4.9 (1.8) | 4.6 (1.8) | 5.0 (2.0) | 4.9 (1.7) | 0.60 |
Patella lead 2 (μg/g) | 30.6 (1.8) | 27.8 (1.8) | 33.9 (1.7) | 30.4 (1.8) | 0.04 |
Tibia lead 2 (μg/g) | 19.8 (1.9) | 18.6 (1.8) | 21.7 (1.8) | 19.4 (2.0) | 0.18 |
Blood lead 2 (μg/dL) | 5.5 (2.0) | 5.0 (2.1) | 5.7 (1.9) | 6.0 (1.8) | 0.10 |
Urinary sodium (mmol/day) | 133 ± 61.2 | 99.5 ± 40.3 | 143 ± 56.6 | 158 ± 68.0 | <0.0001 |
Urinary potassium (mmol/day) | 53.0 ± 23.1 | 61.3 ± 24.5 | 55.7 ± 22.1 | 42.2 ± 17.9 | <0.0001 |
Urinary Na/K ratio | 2.7 ± 1.1 | 1.7 ± 0.4 | 2.6 ± 0.2 | 3.8 ± 0.8 | <0.0001 |
Serum creatinine (mg/dL) | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.2 ± 0.1 | 1.2 ± 0.2 | 0.10 |
Urinary creatinine (mg/dL) | 84.9 ± 44.2 | 76.8 ± 41.8 | 84.6 ± 42.4 | 93.3 ± 47.1 | 0.03 |
Creatinine clearance rate (mL/min) | 71.1 ± 32.5 | 68.5 ± 33.9 | 70.1 ± 29.7 | 74.6 ± 33.8 | 0.37 |
Urinary N-telopeptide (nM BCE/mM creatinine) | 54.9 ± 47.4 | 55.9 ± 38.8 | 56.9 ± 65.4 | 51.9 ± 30.8 | 0.73 |
Dietary calcium intake (mg/day) | 826 ± 451 | 961 ± 482 | 770 ± 488 | 747 ± 342 | 0.0007 |
Dietary vitamin C intake (mg/day) | 166 ± 101 | 195 ± 127 | 157 ± 95 | 144 ± 65 | 0.0007 |
Total energy intake (kCal/day) | 2027 ± 896 | 2147 ± 840 | 1932 ± 1055 | 2003 ± 762 | 0.21 |
Smoking status 3 | <0.0001 | ||||
Never smoker | 93 (29.2%) | 32 (30.2%) | 31 (29.3%) | 30 (28.3%) | |
Former smoker | 194 (61.0%) | 66 (62.3%) | 63 (59.4%) | 65 (61.3%) | |
Current smoker | 31 (9.8%) | 8 (7.6%) | 12 (11.3%) | 11 (10.4%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Kim, D.; Tucker, K.L.; Weisskopf, M.G.; Sparrow, D.; Hu, H.; Park, S.K. Effect of Dietary Sodium and Potassium Intake on the Mobilization of Bone Lead among Middle-Aged and Older Men: The Veterans Affairs Normative Aging Study. Nutrients 2019, 11, 2750. https://doi.org/10.3390/nu11112750
Wang X, Kim D, Tucker KL, Weisskopf MG, Sparrow D, Hu H, Park SK. Effect of Dietary Sodium and Potassium Intake on the Mobilization of Bone Lead among Middle-Aged and Older Men: The Veterans Affairs Normative Aging Study. Nutrients. 2019; 11(11):2750. https://doi.org/10.3390/nu11112750
Chicago/Turabian StyleWang, Xin, Douglas Kim, Katherine L. Tucker, Marc G. Weisskopf, David Sparrow, Howard Hu, and Sung Kyun Park. 2019. "Effect of Dietary Sodium and Potassium Intake on the Mobilization of Bone Lead among Middle-Aged and Older Men: The Veterans Affairs Normative Aging Study" Nutrients 11, no. 11: 2750. https://doi.org/10.3390/nu11112750
APA StyleWang, X., Kim, D., Tucker, K. L., Weisskopf, M. G., Sparrow, D., Hu, H., & Park, S. K. (2019). Effect of Dietary Sodium and Potassium Intake on the Mobilization of Bone Lead among Middle-Aged and Older Men: The Veterans Affairs Normative Aging Study. Nutrients, 11(11), 2750. https://doi.org/10.3390/nu11112750