Effects of Some Food Components on Non-Alcoholic Fatty Liver Disease Severity: Results from a Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size
2.3. Data Collection
2.4. Exposure Assessment
Foods Groups
2.5. Outcome Assessment
2.6. Statistical Methods
3. Results
4. Discussion
4.1. Effect of Food Groups Components on NAFLD
4.1.1. Legumes
4.1.2. Aged Cheeses
4.1.3. Winter Ice-Cream
4.1.4. Rabbit Meat
4.2. Antibiotics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EASL (European Association for the Study of the Liver)-EASD (European Association for the Study of Diabetes)-EASO (European Association for the Study of Obesity) Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [CrossRef] [PubMed]
- Cozzolongo, R.; Osella, A.R.; Elba, S.; Petruzzi, J.; Buongiorno, G.; Giannuzzi, V.; Leone, G.; Bonfiglio, C.; Lanzilotta, E.; Manghisi, O.G.; et al. Epidemiology of HCV infection in the general population: A survey in a southern Italian town. Am. J. Gastroenterol. 2009, 104, 2740–2746. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Notarnicola, M.; Cisternino, A.M.; Reddavide, R.; Inguaggiato, R.; Guerra, V.; Rotolo, O.; Zinzi, I.; Leandro, G.; Correale, M.; et al. Coffee Intake and Liver Steatosis: A Population Study in a Mediterranean Area. Nutrients 2018, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, A.; Taleban, F.A.; Hekmatdoost, A.; Rafiei, A.; Hosseini, V.; Amiri, Z.; Homayounfar, R.; Fakheri, H. How Much Weight Loss is Effective on Nonalcoholic Fatty Liver Disease? Hepat. Mon. 2013, 13, e15227. [Google Scholar] [CrossRef] [PubMed]
- Misciagna, G.; Del Pilar Diaz, M.; Caramia, D.V.; Bonfiglio, C.; Franco, I.; Noviello, M.R.; Chiloiro, M.; Abbrescia, D.I.; Mirizzi, A.; Tanzi, M.; et al. Effect of a Low Glycemic Index Mediterranean Diet on Non-Alcoholic Fatty Liver Disease. A Randomized Controlled Clinici Trial. J. Nutr. Health Aging 2017, 21, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Rahimlou, M.; Yari, Z.; Hekmatdoost, A.; Alavian, S.M.; Keshavarz, S.A. Ginger Supplementation in Nonalcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Hepat. Mon. 2016, 16, e34897. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P. Antimicrobial Residues and Resistance: Understanding and Managing Drug Usage on Dairy Farms. Available online: https://pdfs.semanticscholar.org/35d1/c3052246743a44d97fecd59248272a9d2de2.pdf (accessed on 6 September 2019).
- Rama, A.; Lucatello, L.; Benetti, C.; Galina, G.; Bajraktari, D. Assessment of antibacterial drug residues in milk for consumption in Kosovo. J. Food Drug Anal. 2017, 25, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Aalipour, F.; Mirlohi, M.; Jalali, M. Prevalence of antibiotic residues in commercial milk and its variation by season and thermal processing methods. Int. J. Environ. Health Eng. 2013, 2, 41. [Google Scholar]
- Notarnicola, M.; Caruso, M.G.; Tutino, V.; Bonfiglio, C.; Cozzolongo, R.; Giannuzzi, V.; De Nunzio, V.; De Leonardis, G.; Abbrescia, D.I.; Franco, I.; et al. Significant decrease of saturation index in erythrocytes membrane from subjects with non-alcoholic fatty liver disease (NAFLD). Lipids Health Dis. 2017, 16, 160. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, M.; Caruso, M.G.; Cisternino, A.M.; Inguaggiato, R.; Reddavide, R.; Bonfiglio, C.; Guerra, V.; Notarnicola, M.; De Michele, G.; Correale, M.; et al. Ultrasound evaluation and correlates of fatty liver disease: A population study in a Mediterranean area. Metab. Syndr. Relat. Disord. 2013, 11, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Berzigotti, A. Getting closer to a point-of-care diagnostic assessment in patients with chronic liver disease: Controlled attenuation parameter for steatosis. J. Hepatol. 2014, 60, 910–912. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Tengher-Barna, I.; Ziol, M.; Miette, V.; Fournier, C.; Sandrin, L.; Poupon, R.; Cardoso, A.C.; Marcellin, P.; Douvin, C.; et al. Novel controlled attenuation parameter for noninvasive assessment of steatosis using Fibroscan (R): Validation in chronic hepatitis C. J. Viral. Hepat. 2012, 19, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Skinner, H.A.; Sheu, W.J. Reliability of alcohol use indices. The Lifetime Drinking History and the MAST. J. Stud. Alcohol. 1982, 43, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- International Physical Activity Questionnaire. Available online: https://sites.google.com/site/theipaq/ (accessed on 6 September 2019).
- ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 72, e33. [CrossRef]
- Riboli, E.; Hunt, K.J.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondiere, U.R.; Hemon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Mikolasevic, I.; Orlic, L.; Franjic, N.; Hauser, G.; Stimac, D.; Milic, S. Transient elastography (FibroScan (R)) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease—Where do we stand? World J. Gastroenterol. 2016, 22, 7236–7251. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Piroddi, M.; Albini, A.; Fabiani, R.; Giovannelli, L.; Luceri, C.; Natella, F.; Rosignoli, P.; Rossi, T.; Taticchi, A.; Servili, M.; et al. Nutrigenomics of extra-virgin olive oil: A review. Biofactors 2017, 43, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, G.; Lusk, J.L. The role of beliefs in purchasing process of functional foods. Food Qual. Prefer. 2016, 53, 151–158. [Google Scholar] [CrossRef]
- Bahrami, A.; Teymoori, F.; Eslamparast, T.; Sohrab, G.; Hejazi, E.; Poustchi, H.; Hekmatdoost, A. Legume intake and risk of nonalcoholic fatty liver disease. Indian J. Gastroenterol. 2019, 38, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 2002, 346, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, M.P.; Westerterp, K.R.; Adam, T.C.; Luscombe-Marsh, N.D.; Westerterp-Plantenga, M.S. Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am. J. Clin. Nutr. 2006, 83, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.H.; Woodend, D. Effect of glycemic carbohydrates on short-term satiety and food intake. Nutr. Rev. 2003, 61, S17–S26. [Google Scholar] [CrossRef] [PubMed]
- Paschos, P.; Paletas, K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 2009, 13, 9–19. [Google Scholar] [PubMed]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2014, 15, 392–407. [Google Scholar] [CrossRef] [PubMed]
- Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.L.; Elasy, T.A.; Zheng, W.; Shu, X.O. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2008, 87, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Sievenpiper, J.L.; Kendall, C.W.; Esfahani, A.; Wong, J.M.; Carleton, A.J.; Jiang, H.Y.; Bazinet, R.P.; Vidgen, E.; Jenkins, D.J. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 2009, 52, 1479–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Lanza, E.; Kris-Etherton, P.M.; Colburn, N.H.; Bagshaw, D.; Rovine, M.J.; Ulbrecht, J.S.; Bobe, G.; Chapkin, R.S.; Hartman, T.J. A high legume low glycemic index diet improves serum lipid profiles in men. Lipids 2010, 45, 765–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, G. I Tumulti di Putignano del 1902 e la morte di Margherita Pusterla, Atti Parlamentari, Sentenze, Pubblicistica e Carte Comunali; Edizioni Regione Puglia ed.: Via de Curtis, Mottola, 2004. [Google Scholar]
- Moller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Paschos, P.; Tziomalos, K. Nonalcoholic fatty liver disease and the renin-angiotensin system: Implications for treatment. World J. Hepatol. 2012, 4, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Toblli, J.E.; Munoz, M.C.; Cao, G.; Mella, J.; Pereyra, L.; Mastai, R. ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity 2008, 16, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Summer, A.; Formaggioni, P.; Franceschi, P.; Di Frangia, F.; Righi, F.; Malacarne, M. Cheese as Functional Food: The Example of Parmigiano Reggiano and Grana Padano. Food Technol. Biotechnol. 2017, 55, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Kuczynska, B.; Puppel, K.; Golebiewski, M.; Metera, E.; Sakowski, T.; Sloniewski, K. Differences in whey protein content between cow’s milk collected in late pasture and early indoor feeding season from conventional and organic farms in Poland. J. Sci. Food Agric. 2012, 92, 2899–2904. [Google Scholar] [CrossRef] [PubMed]
- Petrov, P.; Zhukova, Y.; Yuriy, D. The effects of Dairy Management on Milk Quality Characteristics. Turk. J. Agric. Food Sci. Technol. 2016, 4, 782–786. [Google Scholar] [CrossRef]
- Al Zuheir, I.M. Detection of β-lactams and tetracyclines antimicrobial residues in raw dairy milk for human consumption in Palestine. Walailak J. Sci. Tech. 2012, 9, 277–279. [Google Scholar]
- Adesokan, H.K.; Agada, C.A.; Adetunji, V.O.; Akanbi, I.M. Oxytetracycline and penicillin-G residues in cattle slaughtered in south-western Nigeria: Implications for livestock disease management and public health. J. S. Afr. Vet. Assoc. 2013, 84, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.M.; Amiri, M.; Riabi, H.R.; Riabi, H.R. Evaluation of Antibiotic Residues in Pasteurized and Raw Milk Distributed in the South of Khorasan-e Razavi Province, Iran. J. Clin. Diagn. Res. 2016, 10, Fc31–Fc35. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A.; Szendro, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Nistor, E.; Bampidis, V.A.; Păcală, N.; Pentea, M.; Tozer, J.; Prundeanu, H. Nutrient content of rabbit meat as compared to chicken, beef and pork meat. Nutrient content of rabbit meat as compared to chicken, beef and pork meat. J. Anim. Prod. Adv. 2013, 3, 172–176. [Google Scholar] [CrossRef]
- Falcão-e-Cunha, L.; Castro Solla, L.; Maertens, L.; Marounek, M.; Pinheiro, V.; Freire, J.; Mourão, J.L. Alternatives to antibiotic growth promoters in rabbit feeding: A review. World Rabbit Sci. 2007, 15, 127–140. [Google Scholar]
- Cox, L.M.; Blaser, M.J. Pathways in microbe-induced obesity. Cell Metab. 2013, 17, 883–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Roy, T.; Llopis, M.; Lepage, P.; Bruneau, A.; Rabot, S.; Bevilacqua, C.; Martin, P.; Philippe, C.; Walker, F.; Bado, A.; et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 2013, 62, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A.V.; Leung, J.M.; Cho, I.; Kim, S.G.; Li, H.; Gao, Z.; Mahana, D.; et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158, 705–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahana, D.; Trent, C.M.; Kurtz, Z.D.; Bokulich, N.A.; Battaglia, T.; Chung, J.; Müller, C.L.; Li, H.; Bonneau, R.A.; Blaser, M.J. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med. 2016, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouzaki, M.; Comelli, E.M.; Arendt, B.M.; Bonengel, J.; Fung, S.K.; Fischer, S.E.; McGilvray, I.D.; Allard, J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013, 58, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklo, M.; Nieto, F.J. Epidemiology Beyond the Basics, 4th ed.; Bartlett, J.A., Ed.; Jones & Bartlett Publishers: Burlington, MA, USA, 2014. [Google Scholar]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia Wilkins, PA, USA, 2008. [Google Scholar]
- Copeland, K.T.; Checkoway, H.; McMichael, A.J.; Holbrook, R.H. Bias due to misclassification in the estimation of relative risk. Am. J. Epidemiol. 1977, 105, 488–495. [Google Scholar] [CrossRef] [PubMed]
NAFLD † | ||||||
---|---|---|---|---|---|---|
Moderate | Severe | Total | ||||
No. | % | No. | % | No. | % | |
Age | ||||||
30–40 | 9 | 34.6 | 17 | 65.4 | 26 | 100.0 |
41–50 | 20 | 41.7 | 28 | 58.3 | 48 | 100.0 |
51–60 | 13 | 35.1 | 24 | 64.9 | 37 | 100.0 |
60+ | 3 | 12.0 | 22 | 88.0 | 25 | 100.0 |
Sex | ||||||
Men | 26 | 32.9 | 53 | 67.1 | 79 | 100.0 |
Women | 19 | 33.3 | 38 | 66.7 | 57 | 100.0 |
Education | ||||||
≤8 years | 13 | 28.3 | 33 | 71.7 | 46 | 100.0 |
≥9 years | 32 | 35.6 | 58 | 64.4 | 90 | 100.0 |
Body Mass Index | ||||||
25–29.9 | 13 | 41.9 | 18 | 58.1 | 31 | 100.0 |
30–34.9 | 27 | 42.2 | 37 | 57.8 | 64 | 100.0 |
35–39.9 | 3 | 12.0 | 22 | 88.0 | 25 | 100.0 |
≥40 | 2 | 12.5 | 14 | 87.5 | 16 | 100.0 |
Waist Circumference Women | ||||||
≤88 cm | 8 | 80.0 | 2 | 20.0 | 10 | 100.0 |
>88 cm | 11 | 23.4 | 36 | 76.6 | 47 | 100.0 |
Waist Circumference Men | ||||||
≤102 cm | 16 | 47.1 | 18 | 52.9 | 34 | 100.0 |
>102 cm | 10 | 22.2 | 35 | 77.8 | 45 | 100.0 |
Level of Physical Activity | ||||||
Low | 2 | 22.2 | 7 | 77.8 | 9 | 100.0 |
Moderate | 13 | 40.6 | 19 | 59.4 | 32 | 100.0 |
High | 30 | 33.7 | 59 | 66.3 | 89 | 100.0 |
Smoking status | ||||||
Never smoked | 29 | 36.3 | 51 | 63.7 | 80 | 100.0 |
Former smoker | 8 | 25.0 | 24 | 75.0 | 32 | 100.0 |
Current smoker | 8 | 33.3 | 16 | 66.7 | 24 | 100.0 |
Stiffness | ||||||
F0 | 9 | 20.0 | 12 | 14.0 | 21 | 100.0 |
F0/F1 | 26 | 58.0 | 47 | 55.0 | 73 | 100.0 |
F1 | 1 | 2.0 | 3 | 3.0 | 4 | 100.0 |
F2 | 6 | 13.0 | 9 | 10.0 | 15 | 100.0 |
F3 | 3 | 7.0 | 12 | 14.0 | 15 | 100.0 |
F4 | 0 | 0.0 | 3 | 3.0 | 3 | 100.0 |
Fatty Liver Index | ||||||
≤60% | 23 | 51.0 | 21 | 23.0 | 46 | 100.0 |
>60% | 22 | 49.0 | 70 | 77.0 | 92 | 100.0 |
Total | 45 | 33.1 | 91 | 66.9 | 136 | 100.0 |
NAFLD † | ||
---|---|---|
Moderate | Severe | |
Mean (SD) | Mean (SD) | |
SBP (mmHg) ‡ | 123.44 (18.43) | 126.28 (14.21) |
DBP (mmHg) | 80.78 (9.35) | 81.83 (7.28) |
Homa-IR§ | 2.06 (0.85) | 3.43 (2.22) |
Glucose (mg/dl) | 92.20 (7.16) | 101.51 (21.56) |
Hemoglobin A1C IFCC (mmol/mol) | 37.44 (4.18) | 40.48 (8.18) |
Urea (mg %) | 35.67 (9.54) | 34.30 (9.23) |
Creatinine (mg/dL) | 0.78 (0.18) | 0.79 (0.18) |
eGFR (mL/min/1.73 mq) µ | 108.59 (100.59) | 85.98 (20.44) |
Total Bilirubin (mg/dL) | 0.66 (0.39) | 0.60 (0.29) |
Direct Bilirubin (mg/dL) | 0.16 (0.05) | 0.16 (0.05) |
GOT (UI/L) ¡ | 23.36 (4.93) | 26.85 (9.89) |
GPT (UI/L) ¥ | 28.60 (10.17) | 35.73 (20.29) |
GGT (UI/L) ! | 22.56 (10.84) | 28.88 (22.73) |
Iron (mcg%) | 86.69 (32.01) | 99.42 (100.34) |
Total Cholesterol (mg %) | 203.76 (35.66) | 198.32 (40.47) |
HDL Cholesterol (mg/dL) # | 49.67 (13.18) | 42.38 (10.11) |
Triglycerides (mg %) | 108.18 (60.95) | 143.05 (93.62) |
Ceruloplasmin (mg/dL) | 32.45 (9.19) | 31.27 (8.05) |
Alpha1 Antitrypsin (mg/dL) | 134.51 (19.37) | 137.40 (18.01) |
FT3 (pg/mL) ¿ | 3.46 (0.47) | 3.38 (0.37) |
FT4 (ng/mL) $ | 0.85 (0.10) | 0.87 (0.13) |
Cortisol (μg/dL) | 11.87 (4.74) | 10.01 (4.17) |
C-peptide (ng/mL) | 2.53 (0.70) | 3.38 (1.31) |
Insulin (μUI/mL) | 9.02 (3.61) | 13.59 (7.27) |
Ferritin (ng/mL) | 140.71 (146.19) | 139.41 (152.69) |
Folate (ng/mL) | 6.24 (2.84) | 6.01 (2.73) |
Vit. B 12 (pg/mL) | 308.73 (96.89) | 321.18 (106.34) |
KCAL | 2385.80 (726.51) | 2281.33 (823.33) |
NAFLD † | |||
---|---|---|---|
Moderate | Severe | ||
Foods (g/day) | Mean (a) | Mean (a) | OR (95% CI) (a) |
Milk And Yogurt | 450.21 | 448.79 | 0.99 (0.99–1.00) |
Sweet Products Milk Based | 17.75 | 18.37 | 1.00 (0.97–1.03) |
Aged Cheeses | 34.79 | 26.23 | 0.98 (0.97–1.00) |
Cheeses | 23.59 | 22.93 | 0.99 (0.98–1.02) |
Meets And Eggs | 117.78 | 133.60 | 1.00 (0.99–1.01) |
Meat Products | 20.64 | 20.12 | 0.99 (0.98–1.02) |
Non-Starchy Vegetables | 152.50 | 166.43 | 1.00 (0.99–1.01) |
Fruits | 383.33 | 314.78 | 0.99 (0.99–1.00) |
Dried Fruits | 11.30 | 9.92 | 0.99 (0.98–1.01) |
Refined Grains | 74.89 | 79.85 | 1.00 (0.99–1.01) |
Whole Grains | 6.80 | 6.32 | 0.99 (0.96–1.03) |
Legumes | 50.02 | 42.66 | 0.99 (0.98–1.00) |
Starchy Vegetables | 38.82 | 46.93 | 1.01 (0.99–1.02) |
Added Sugar And Sweets | 33.81 | 25.26 | 0.99 (0.97–1.00) |
Paste, Bisquits And Bread Rolls | 217.23 | 216.86 | 0.99 (0.99–1.00) |
Fats | 23.72 | 27.37 | 1.03(0.99–1.07) |
Alcoholic Beverages | 115.79 | 165.25 | 1.00 (0.99–1.00) |
Tea Coffee | 125.95 | 133.41 | 1.00 (0.99–1.00) |
Non-Alcoholic Caloric Beverages | 91.27 | 125.79 | 1.00 (0.99–1.00) |
Souces Dressings | 7.40 | 9.97 | 1.02 (0.99–1.05) |
Fish | 41.14 | 42.40 | 1.00 (0.99–1.02) |
NAFLD † | ||||
---|---|---|---|---|
Moderate | Severe | |||
Foods (g/day) | Mean (a) | Mean (a) | OR (95% CI) (a) | OR (95%CI) (a, b) |
Protective Foods | ||||
Chocolate | 6.99 | 4.02 | 0.95 (0.90–0.99) ** | 0.94 (0.84–1.05) |
Winter Icecream | 2.21 | 0.88 | 0.82 (0.70–0.96) ** | 0.65 (0.47–0.89) * |
Apricoats | 8.35 | 4.94 | 0.95 (0.90–0.99) ** | 0.95 (0.82–1.10) |
Pears | 56.84 | 35.09 | 0.99 (0.99–0.99) ** | 0.99 (0.98–1.01) |
Soya Milk | 15.59 | 5.04 | 0.98 (0.97–0.99) ** | 0.99 (0.97–1.02) |
Legumes-Rice | 1.60 | 0.68 | 0.83 (0.69–0.98) ** | 0.73 (0.50–1.06) |
Chickpeas | 1.95 | 1.19 | 0.71 (0.56–0 92) * | 0.57 (0.34–0.97) ** |
Dried Peas | 1.63 | 0.97 | 0.69 (0.51–0.94) ** | 0.78 (0.44–1.39) |
Local Aged Cheeses | 34.79 | 26.23 | 0.99 (0.98–1.00) | 0.85 (0.74–0.98) ** |
Promoting Foods | ||||
Industrial Aged Cheeses | 31.85 | 25.41 | 0.88 (0.78–0.99) ** | 1.17 (1.01–1.35) ** |
White Bread | 17.81 | 39.08 | 1.01 (1.00–1.02) ** | 1.02 (0.99–1.04) |
Sweet Milk-Nowinter Icecream | 17.75 | 18.37 | 1.01 (0.98–1.05) | 1.11 (1.01–1.21) ** |
French Fries | 3.23 | 6.58 | 1.06 (0.99–1.12) | 1.10 (0.99–1.24) |
Fats | 23.72 | 27.37 | 1.03 (0.99–1.07) | 1.12 (1.01–1.25) ** |
Rabbit Meat | 1.71 | 3.80 | 1.12 (1.01–1.24) ** | 1.23 (1.01–1.49) ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirizzi, A.; Franco, I.; Leone, C.M.; Bonfiglio, C.; Cozzolongo, R.; Notarnicola, M.; Giannuzzi, V.; Tutino, V.; De Nunzio, V.; Bruno, I.; et al. Effects of Some Food Components on Non-Alcoholic Fatty Liver Disease Severity: Results from a Cross-Sectional Study. Nutrients 2019, 11, 2744. https://doi.org/10.3390/nu11112744
Mirizzi A, Franco I, Leone CM, Bonfiglio C, Cozzolongo R, Notarnicola M, Giannuzzi V, Tutino V, De Nunzio V, Bruno I, et al. Effects of Some Food Components on Non-Alcoholic Fatty Liver Disease Severity: Results from a Cross-Sectional Study. Nutrients. 2019; 11(11):2744. https://doi.org/10.3390/nu11112744
Chicago/Turabian StyleMirizzi, Antonella, Isabella Franco, Carla Maria Leone, Caterina Bonfiglio, Raffaele Cozzolongo, Maria Notarnicola, Vito Giannuzzi, Valeria Tutino, Valentina De Nunzio, Irene Bruno, and et al. 2019. "Effects of Some Food Components on Non-Alcoholic Fatty Liver Disease Severity: Results from a Cross-Sectional Study" Nutrients 11, no. 11: 2744. https://doi.org/10.3390/nu11112744
APA StyleMirizzi, A., Franco, I., Leone, C. M., Bonfiglio, C., Cozzolongo, R., Notarnicola, M., Giannuzzi, V., Tutino, V., De Nunzio, V., Bruno, I., Buongiorno, C., Campanella, A., Deflorio, V., Pascale, A., Procino, F., Sorino, P., & Osella, A. R. (2019). Effects of Some Food Components on Non-Alcoholic Fatty Liver Disease Severity: Results from a Cross-Sectional Study. Nutrients, 11(11), 2744. https://doi.org/10.3390/nu11112744