Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cereal Fibre in Subjects with Prediabetes—A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT)
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Dietary Supplement
2.2. Calculations
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
Abbreviations
ALAT | alanine-amino transferase |
ASAT | aspartate-amino transferase |
AUC | area under the curve |
BCAA | branched-chain amino acid |
BIA | bioelectric impedance analysis |
CRP | C-reactive protein |
EPAQ | European Physical Activity Questionnaire |
FLI | fatty liver index |
GGT | gamma-glutamyl transferase |
GLP-1 | glucagon-like peptide 1 |
HbA1c | glycated haemoglobin |
HDL | high-density lipoprotein |
HIC | hepatic insulin clearance |
HOMAIR | homeostasis model assessment insulin resistance index |
IFG | impaired fasting glucose |
IGT | impaired glucose tolerance |
ISIffa | insulin sensitivity index of blood-free fatty acids |
LDL | low-density lipoprotein |
MR-S | magnetic resonance spectroscopy |
NAFLD | nonalcoholic fatty liver disease |
NFG | normal fasting glucose |
OptiFiT | Optimal Fibre Trial for Diabetes Prevention |
OGTT | oral glucose tolerance test |
PA | physical activity |
PREDIAS | Prevention of Diabetes Self-Management |
ProFiMet | Protein, Fibre and Metabolic Syndrome |
QUICKI | quantitative insulin sensitivity check index |
T2DM | type 2 diabetes mellitus |
References
- Rawshani, A.; Rawshani, A.; Franzén, S.; Sattar, N.; Eliasson, B.; Svensson, A.M.; Zethelius, B.; Miftaraj, M.; McGuire, D.K.; Rosengren, A.; et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2018, 379, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K.; Saydah, S.H.; Isom, S.; Divers, J.; Lawrence, J.M.; Dabelea, D.; Mayer-Davis, E.J.; Imperatore, G.; Bell, R.A.; Hamman, R.F. Mortality in youth-onset type 1 and type 2 diabetes: The SEARCH for Diabetes in Youth study. J. Diabetes Complicat. 2018, 32, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.; Gomes, M.B.; Nicolucci, A.; Pocock, S.; Rathmann, W.; Shestakova, M.V.; Watada, H.; Shimomura, I.; Chen, H.; Cid-Ruzafa, J.; et al. DISCOVER investigators. Vascular complications in patients with type 2 diabetes: Prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc. Diabetol. 2018, 17, 150. [Google Scholar] [CrossRef] [PubMed]
- Peeters, P.J.; Bazelier, M.T.; Leufkens, H.G.; de Vries, F.; De Bruin, M.L. The risk of colorectal cancer in patients with type 2 diabetes: Associations with treatment stage and obesity. Diabetes Care 2015, 38, 495–502. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium; Spijkerman, A.M.; van der A, D.L.; Nilsson, P.M.; Ardanaz, E.; Gavrila, D.; Agudo, A.; Arriola, L.; Balkau, B.; Beulens, J.W.; et al. Smoking and long-term risk of type 2 diabetes: The EPIC-InterAct study in European populations. Diabetes Care 2014, 37, 3164–3171. [Google Scholar] [PubMed]
- Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997, 20, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Snehalatha, C.; Mary, S.; Mukesh, B.; Bhaskar, A.D.; Vijay, V. Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006, 49, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [PubMed]
- Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.; van der Schouw, Y.T.; Bergmann, M.M.; Rohrmann, S.; Schulze, M.B.; Buijsse, B.; Grobbee, D.E.; Arriola, L.; Cauchi, S.; Tormo, M.J.; et al. InterAct Consortium. Alcohol consumption and risk of type 2 diabetes in European men and women: Influence of beverage type and body size The EPIC-InterAct study. J. Intern. Med. 2012, 272, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Pischon, T.; Bergmann, M.M.; Teucher, B.; Kaaks, R.; Boeing, H. Coffee consumption and risk of chronic disease in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany study. Am. J. Clin. Nutr. 2012, 95, 901–908. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: The EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015, 58, 1394–1408. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fibre consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Honsek, C.; Kabisch, S.; Kemper, M.; Gerbracht, C.; Arafat, A.M.; Birkenfeld, A.L.; Dambeck, U.; Osterhoff, M.A.; Weickert, M.O.; Pfeiffer, A.F.H. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: The randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia 2018, 61, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Freeland, K.R.; Wilson, C.; Wolever, T.M. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br. J. Nutr. 2010, 103, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hattersley, J.G.; Pfeiffer, A.F.; Roden, M.; Petzke, K.J.; Hoffmann, D.; Rudovich, N.N.; Randeva, H.S.; Vatish, M.; Osterhoff, M.; Goegebakan, Ö.; et al. Modulation of amino acid metabolic signatures by supplemented isoenergetic diets differing in protein and cereal fibre content. J. Clin. Endocrinol. Metab. 2014, 99, E2599–E2609. [Google Scholar] [CrossRef] [PubMed]
- Rückert, I.M.; Heier, M.; Rathmann, W.; Baumeister, S.E.; Döring, A.; Meisinger, C. Association between markers of fatty liver disease and impaired glucose regulation in men and women from the general population: The KORA-F4-study. PLoS ONE 2011, 6, e22932. [Google Scholar] [CrossRef] [PubMed]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.; Almgren, P.; et al. Novel sub-groups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar] [CrossRef]
- Stidsen, J.V.; Henriksen, J.E.; Olsen, M.H.; Thomsen, R.W.; Nielsen, J.S.; Rungby, J.; Ulrichsen, S.P.; Berencsi, K.; Kahlert, J.A.; Friborg, S.G.; et al. Pathophysiology-based phenotyping in type 2 diabetes: A clinical classification tool. Diabetes Metab. Res. Rev. 2018, 34, e3005. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, M.F.; Zohar, Y.; Hill, J.O.; Astrup, A. Personalized Dietary Management of Overweight and Obesity Based on Measures of Insulin and Glucose. Annu. Rev. Nutr. 2018, 38, 245–272. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, M.F.; Bray, G.A.; Zohar, Y.; Urban, L.; Miketinas, D.C.; Williamson, D.A.; Ryan, D.H.; Rood, J.; Champagne, C.M.; Sacks, F.M.; et al. Pretreatment Fasting Glucose and Insulin as Determinants of Weight Loss on Diets Varying in Macronutrients and Dietary Fibres-The POUNDS LOST Study. Nutrients 2019, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, S.; Meyer, N.M.T.; Honsek, C.; Gerbracht, C.; Dambeck, U.; Kemper, M.; Osterhoff, M.A.; Birkenfeld, A.L.; Arafat, A.M.; Hjorth, M.F.; et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019, 11, 2385. [Google Scholar] [CrossRef] [PubMed]
- Miyake, T.; Hirooka, M.; Yoshida, O.; Furukawa, S.; Kumagi, T.; Koizumi, M.; Yamamoto, S.; Kuroda, T.; Arimitsu, E.; Takeshita, E.; et al. Differences in the risk of fatty liver for onset of impaired fasting glucose according to baseline plasma glucose levels. J. Gastroenterol. 2017, 52, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ozhan, B.; Ersoy, B.; Kiremitci, S.; Ozkol, M.; Taneli, F. Insulin sensitivity indices: Fasting versus glucose-stimulated ındices in pediatric non-alcoholic fatty liver disease. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3450–3458. [Google Scholar] [PubMed]
- Lindström, J.; Neumann, A.; Sheppard, K.E.; Gilis-Januszewska, A.; Greaves, C.J.; Handke, U.; Pajunen, P.; Puhl, S.; Pölönen, A.; Rissanen, A.; et al. Take action to prevent diabetes--the IMAGE toolkit for the prevention of type 2 diabetes in Europe. Horm. Metab. Res. 2010, 42, S37–S55. [Google Scholar] [CrossRef] [PubMed]
- Kulzer, B.; Hermanns, N.; Gorges, D.; Schwarz, P.; Haak, T. Prevention of diabetes self-management program (PREDIAS): Effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care 2009, 32, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Wareham, N.J.; Jakes, R.W.; Rennie, K.L.; Mitchell, J.; Hennings, S.; Day, N.E. Validity and repeatability of the EPIC-Norfolk Physical Activity Questionnaire. Int. J. Epidemiol. 2002, 31, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, B.M.; Vasquez-Caicedo, A.L.; Bell, S.; Krems, C.; Brombach, C. The German nutrient database: Basis for analysis of the nutritional status of the German Population. J. Food Comp. Anal. 2008, 21, 115–118. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Belfiore, F.; Iannello, S.; Volpicelli, G. Insulin sensitivity indices calculated from basal and OGTT-induced insulin, glucose, and FFA levels. Mol. Genet. Metab. 1998, 63, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Aloulou, I.; Brun, J.F.; Mercier, J. Evaluation of insulin sensitivity and glucose effectiveness during a standardized breakfast test: Comparison with the minimal model analysis of an intravenous glucose tolerance test. Metabolism 2006, 55, 676–690. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, J.; Wibell, L. Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res. Clin. Pract. 1990, 10, 167–175. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Schüler, R.; Osterhoff, M.A.; Frahnow, T.; Seltmann, A.C.; Busjahn, A.; Kabisch, S.; Xu, L.; Mosig, A.S.; Spranger, J.; Möhlig, M.; et al. High-Saturated-Fat Diet Increases Circulating Angiotensin-Converting Enzyme, Which Is Enhanced by the rs4343 Polymorphism Defining Persons at Risk of Nutrient-Dependent Increases of Blood Pressure. J. Am. Heart Assoc. 2017, 6, e004465. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M.; Roden, M. Molecular mechanisms of lipid-induced insulin resistance in muscle, liver and vasculature. Diabetes Obes. Metab. 2005, 7, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Schüler, R.; Seebeck, N.; Osterhoff, M.A.; Witte, V.; Flöel, A.; Busjahn, A.; Jais, A.; Brüning, J.C.; Frahnow, T.; Kabisch, S.; et al. Pfeiffer AFH. VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Mol. Metab. 2018, 11, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemiö, K.; Hämäläinen, H.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet 2006, 368, 1673–1679. [Google Scholar] [CrossRef]
- Jeon, C.Y.; Lokken, R.P.; Hu, F.B.; van Dam, R.M. Physical activity of moderate intensity and risk of type 2 diabetes: A systematic review. Diabetes Care 2007, 30, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Entwistle, T.R.; Green, A.C.; Fildes, J.E.; Miura, K. Adherence to Mediterranean and low-fat diets among heart and lung transplant recipients: A randomized feasibility study. Nutr. J. 2018, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- McClain, A.D.; Otten, J.J.; Hekler, E.B.; Gardner, C.D. Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status. Diabetes Obes. Metab. 2013, 15, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Andrianasolo, R.M.; Hercberg, S.; Kesse-Guyot, E.; Druesne-Pecollo, N.; Touvier, M.; Galan, P.; Varraso, R. Association between dietary fiber intake and asthma (symptoms and control): Results from the French national e-cohort NutriNet-Santé. Br. J. Nutr. 2019, 25, 1–40. [Google Scholar]
- Liu, X.; Wu, Y.; Li, F.; Zhang, D. Dietary fiber intake reduces risk of inflammatory bowel disease: Result from a meta-analysis. Nutr. Res. 2015, 35, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Xu, J.Y.; Zhang, W.; Han, S.; Qin, L.Q. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: A meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 2015, 66, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fibre and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Herman-Lara, E.; Elvira-Torales, L.I.; Rodriguez-Miranda, J.; Torruco-Uco, J.G.; Carmona-García, R.; Mendoza-García, P.G.; García, H.S.; Soto-Rodríguez, I.; Sánchez-Valdivieso, E.; Martínez-Sánchez, C.E. Impact of micronized starfruit (Averrhoa carambola L.) fiber concentrate on lipid metabolism in mice. Int. J. Food Sci. Nutr. 2014, 65, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Mälkki, Y.; Törrönen, R.; Pelkonen, K.; Myllymäki, O.; Hänninen, O.; Syrjänen, K. Effects of oat-bran concentrate on rat serum lipids and liver fat infiltration. Br. J. Nutr. 1993, 70, 767–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.S.; Wang, K.; Ma, K.; Bao, L.; Liu, H.W. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin. J. Nat. Med. 2019, 17, 3–14. [Google Scholar] [CrossRef]
- Zaharia, O.P.; Strassburger, K.; Strom, A.; Bönhof, G.J.; Karusheva, Y.; Antoniou, S.; Bódis, K.; Markgraf, D.F.; Burkart, V.; Müssig, K.; et al. German Diabetes Study Group. Risk of diabetes-associated diseases in sub-groups of patients with recent-onset diabetes: A 5-year follow-up study. Lancet Diabetes Endocrinol. 2019, 7, 684–694. [Google Scholar] [CrossRef]
NONOBESE Fibre | NONOBESE Placebo | OBESE Fibre | OBESE Placebo | |
---|---|---|---|---|
Sex (w/m) | 16/10 (62%) | 11/12 (48%) | 32/9 (78%) | 25/21 (54%) * |
Age (years) | 62.0 ± 9.7 | 62.4 ± 9.1 | 58.8 ± 8.9 | 58.7 ± 9.1 |
BMI (kg/m2) | 26.9 ± 3.2 | 27.3 ± 2.5 | 34.8 ± 3.5 | 36.5 ± 5.8 |
Weight (kg) | 77.5 ± 12.0 | 75.9 ± 12.1 | 94.0 ± 14.0 | 103.0 ± 18.2 |
Waist circumference (cm) | 93.8 ± 9.0 | 94.0 ± 9.2 | 107.7 ± 11.7 | 113.2 ± 12.3 |
Hip circumference (cm) | 102.8 ± 8.4 | 102.9 ± 5.8 | 116.6 ± 11.3 | 120.2 ± 12.7 |
Waist-to-hip ratio (WHR) | 0.91 ± 0.08 | 0.91 ± 0.07 | 0.93 ± 0.08 | 0.95 ± 0.09 |
BIA—body fat (%) | 32.3 ± 9.0 | 31.7 ± 5.5 | 39.4 ± 7.0 | 37.9 ± 8.5 |
RR syst. (mmHg) | 139 ± 20 | 140 ± 17 | 140 ± 16 | 142 ± 16 |
Fasting glucose (mg/dL) | 89.1 ± 10.7 | 90.0 ± 10.2 | 90.7 ± 10.2 | 92.2 ± 10.0 |
2 h glucose (mg/dL) | 159.5 ± 18.4 | 155.7 ± 16.8 | 156.7 ± 15.1 | 164.0 ± 19.4 |
HbA1c (%) | 5.5 ± 0.4 | 5.6 ± 0.3 | 5.7 ± 0.3 | 5.6 ± 0.4 |
Fasting insulin (mU/L) | 6.8 ± 3.3 | 7.8 ± 4.5 | 10.3 ± 4.7 | 10.8 ± 5.5 |
Fasting C-peptide (µg/L) | 1.3 ± 0.8 | 1.4 ± 0.8 | 1.8 ± 0.7 | 1.8 ± 0.6 |
HOMAIR | 1.9 ± 1.0 | 2.1 ± 1.3 | 2.7 ± 1.4 | 2.9 ± 1.8 |
QUICKI | 0.36 ± 0.03 | 0.36 ± 0.05 | 0.34 ± 0.03 | 0.33 ± 0.02 |
ISIffa | 1.00 ± 0.21 | 0.96 ± 0.36 | 0.78 ± 0.30 | 0.75 ± 0.22 |
Belfiore | 0.79 ± 0.27 | 0.77 ± 0.35 | 0.57 ± 0.24 | 0.61 ± 0.23 |
HICc-peptide (mU/µg) | 5.4 ± 2.0 | 5.5 ± 2.2 | 4.6 ± 1.5 | 4.7 ± 1.8 |
HDL cholesterol (mmol/L) | 1.3 ± 0.3 | 1.4 ± 0.4 | 1.2 ± 0.2 | 1.2 ± 0.3 |
LDL cholesterol (mmol/L) | 3.7 ± 0.8 | 3.5 ± 0.6 | 3.7 ± 1.0 | 3.5 ± 0.8 |
CRP (mg/L) | 2.1 ± 2.4 | 1.2 ± 1.1 | 5.9 ± 5.3 | 4.0 ± 4.0 |
Leukocyte count (Gpt/L) | 4.98 ± 1.00 | 5.12 ± 1.62 | 6.32 ± 1.60 | 5.61 ± 1.26 |
Uric acid (µmol/L) | 348 ± 83 | 337 ± 93 | 335 ± 70 | 355 ± 75 |
GGT (U/L) | 28 ± 22 | 31 ± 32 | 39 ± 40 | 34 ± 29 |
Fatty liver index (FLI) | 43 ± 23 | 42 ± 25 | 83 ± 12 | 85 ± 14 |
NONOBESE Fibre (Baseline) | NONOBESE Placebo (Baseline) | OBESE Fibre (Baseline) | OBESE Placebo (Baseline) | NONOBESE Fibre (12 Months) | NONOBESE Placebo (12 Months) | OBESE Fibre (12 Months) | OBESE Placebo (12 Months) | |
---|---|---|---|---|---|---|---|---|
Food intake | ||||||||
Total energy intake (kcal/day) | 2101 ± 519 | 1938 ± 515 | 2015 ± 443 | 2042 ± 611 | 1767 ± 450 * | 1830 ± 489 * | 1718 ± 349 | 1953 ± 569 * |
Fat intake (g/day) | 82 ± 24 | 73 ± 22 | 78 ± 25 | 81 ± 31 | 66 ± 21 * | 65 ± 23 * | 66 ± 22 * | 75 ± 31 |
Saturated fat (g/day) | 35 ± 13 | 31 ± 11 | 34 ± 11 | 36 ± 13 | 27 ± 11 * | 27 ± 10 * | 28 ± 10 ** | 33 ± 13 |
Fat intake (kcal%) | 37 ± 6 | 36 ± 5 | 36 ± 7 | 37 ± 6 | 34 ± 6 | 32 ± 5 | 35 ± 7 | 35 ± 6 |
Protein intake (g/day) | 80 ± 19 | 77 ± 18 | 83 ± 26 | 86 ± 24 | 73 ± 22 | 74 ± 21 | 70 ± 19 ** | 84 ± 22 |
Carbohydrate intake (g/day) | 234 ± 66 | 218 ± 59 | 222 ± 53 | 224 ± 76 | 205 ± 52 | 214 ± 51 | 201 ± 40 | 220 ± 59 |
Total dietary fibre intake (g/day) | 24 ± 6 | 24 ± 6 | 22 ± 7 | 23 ± 8 | 24 ± 6 | 26 ± 10 | 22 ± 7 | 24 ± 8 |
Insoluble | 16 ± 4 | 16 ± 4 | 15 ± 5 | 15 ± 5 | 14 ± 5 | 16 ± 5 | 15 ± 6 | 15 ± 5 |
Soluble | 7 ± 2 | 7 ± 2 | 7 ± 2 | 7 ± 2 | 7 ± 2 | 7 ± 2 | 7 ± 2 | 7 ± 2 |
Alcohol (g/day) | 10 ± 12 | 11 ± 14 | 11 ± 18 | 7 ± 13 | 6 ± 8 * | 10 ± 16 | 5 ± 8 * | 5 ± 8 * |
Physical activity | ||||||||
Steps per day (n) | 7381 ± 3200 | 5921 ± 1873 | 6255 ± 2797 | 6442 ± 2873 | 6964 ± 2651 | 6434 ± 3816 | 7769 ± 3608 | 6988 ± 3184 |
Energy expenditure by steps (kcal/day) | 492 ± 271 | 398 ± 159 | 432 ± 205 | 449 ± 256 | 426 ± 150 | 421 ± 241 | 515 ± 234 | 471 ± 218 |
NONOBESE Fibre | NONOBESE Placebo | OBESE Fibre | OBESE Placebo | NONOBESE: Fibre vs. Placebo | OBESE: Fibre vs. Placebo | Placebo: NONOBESE vs. OBESE | Fibre: NONOBESE vs. OBESE | |
---|---|---|---|---|---|---|---|---|
Weight (kg) | −2.4 ± 3.2 ** | −2.0 ± 3.2 ** | −2.8 ± 5.3 ** | −3.6 ± 6.6 *** | 0.554 | 0.521 | 0.265 | 0.877 |
Waist circumference (cm) | −2.6 ± 3.7 ** | −2.9 ± 5.6 * | −3.1 ± 5.9 ** | −3.5 ± 7.2 ** | 0.353 | 0.720 | 0.410 | 0.556 |
Hip circumference (cm) | −2.3 ± 4.4 * | −1.7 ± 2.6 ** | −2.4 ± 4.5 ** | −3.2 ± 6.2 ** | 0.877 | 0.622 | 0.484 | 0.995 |
Waist-to-hip ratio (WHR) | −0.01 ± 0.04 | −0.01 ± 0.04 | −0.01 ± 0.04 | −0.00 ± 0.06 | 0.516 | 0.772 | 0.712 | 0.786 |
BIA—body fat (%) | 0.2 ± 5.4 | −2.7 ± 6.4 | −0.9 ± 4.2 | −0.3 ± 3.3 | 0.096 | 0.502 | 0.040 † | 0.293 |
RR syst. (mmHg) | −7 ± 15 | 1 ± 17 | 0 ± 16 | −3 ± 18 | 0.211 | 0.488 | 0.576 | 0.214 |
Fasting glucose (mg/dL) | −0.4 ± 11.5 | −0.6 ± 7.7 | −2.8 ± 10.7 | −1.7 ± 8.9 | 0.944 | 0.524 | 0.819 | 0.358 |
2 h glucose (mg/dL) | −8.4 ± 34.8 | 0.1 ± 31.7 | −12.9 ± 25.2 ** | −6.7 ± 30.4 | 0.214 | 0.356 | 0.449 | 0.827 |
HbA1c (%) | 0.1 ± 0.5 | 0.1 ± 0.5 | −0.1 ± 0.4 | 0.1 ± 0.5 | 0.767 | 0.052 | 0.679 | 0.072 |
Fasting insulin (mU/L) | −0.9 ± 2.2 | −1.8 ± 2.9 * | −1.9 ± 3.9 ** | −0.7 ± 5.5 | 0.268 | 0.304 | 0.681 | 0.094 |
Fasting C-peptide (µg/L) | 0.4 ± 1.6 | 0.2 ± 1.3 | −0.1 ± 1.0 | 0.5 ± 1.6 | 0.250 | 0.046 | 0.627 | 0.035 † |
HOMAIR | −0.3 ± 0.7 | −0.5 ± 0.8 ** | −0.6 ± 1.2 ** | −0.3 ± 1.6 | 0.307 | 0.361 | 0.701 | 0.146 |
QUICKI | 0.01 ± 0.03 | 0.02 ± 0.03 * | 0.01 ± 0.03 * | 0.01 ± 0.03 * | 0.360 | 0.493 | 0.350 | 0.567 |
ISIffa | 0.03 ± 0.23 | 0.11 ± 0.35 | 0.09 ± 0.30 | 0.08 ± 0.31 | 0.287 | 0.434 | 0.480 | 0.314 |
Belfiore | 0.07 ± 0.37 | 0.11 ± 0.23 * | 0.17 ± 0.22 ** | 0.14 ± 0.27 ** | 0.939 | 0.651 | 0.558 | 0.421 |
HICc-peptide (mU/µg) | 1.1 ± 3.0 | 0.9 ± 1.6 * | 1.3 ± 2.0 ** | 1.9 ± 2.7 * | 0.851 | 0.331 | 0.222 | 0.556 |
HDL cholesterol (mmol/L) | 0.0 ± 0.2 | 0.0 ± 0.3 | 0.0 ± 0.1 | −0.0 ± 0.2 | 0.833 | 0.204 | 0.780 | 0.571 |
LDL cholesterol (mmol/L) | −0.2 ± 1.1 | −0.1 ± 0.8 | −0.0 ± 0.5 | 0.1 ± 0.9 | 0.075 | 0.570 | 0.441 | 0.106 |
CRP (mg/L) | −0.4 ± 2.2 | −0.1 ± 1.3 | −1.6 ± 4.4 * | −0.8 ± 3.2 | 0.928 | 0.904 | 0.098 | 0.129 |
Leukocyte count (Gpt/L) | 0.11 ± 1.09 | −0.30 ± 1.07 | −0.95 ± 1.26 ** | 0.26 ± 0.96 | 0.239 | <0.001 ††† | 0.072 | 0.006 †† |
Uric acid (µmol/L) | −22 ± 56 | −18 ± 55 | −4 ± 59 | −3 ± 59 | 0.865 | 0.993 | 0.257 | 0.157 |
GGT (U/L) | −2 ± 11 | −1 ± 17 | −9 ± 37 * | 2 ± 26 | 0.173 | 0.042 † | 0.577 | 0.203 |
FLI | −5 ± 14 | −5 ± 13 | −7 ± 15 * | −4 ± 13 | 0.926 | 0.409 | 0.741 | 0.797 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabisch, S.; Meyer, N.M.T.; Honsek, C.; Gerbracht, C.; Dambeck, U.; Kemper, M.; Osterhoff, M.A.; Birkenfeld, A.L.; Arafat, A.M.; Weickert, M.O.; et al. Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cereal Fibre in Subjects with Prediabetes—A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019, 11, 2726. https://doi.org/10.3390/nu11112726
Kabisch S, Meyer NMT, Honsek C, Gerbracht C, Dambeck U, Kemper M, Osterhoff MA, Birkenfeld AL, Arafat AM, Weickert MO, et al. Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cereal Fibre in Subjects with Prediabetes—A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients. 2019; 11(11):2726. https://doi.org/10.3390/nu11112726
Chicago/Turabian StyleKabisch, Stefan, Nina Marie Tosca Meyer, Caroline Honsek, Christiana Gerbracht, Ulrike Dambeck, Margrit Kemper, Martin A. Osterhoff, Andreas L. Birkenfeld, Ayman M. Arafat, Martin O. Weickert, and et al. 2019. "Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cereal Fibre in Subjects with Prediabetes—A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT)" Nutrients 11, no. 11: 2726. https://doi.org/10.3390/nu11112726
APA StyleKabisch, S., Meyer, N. M. T., Honsek, C., Gerbracht, C., Dambeck, U., Kemper, M., Osterhoff, M. A., Birkenfeld, A. L., Arafat, A. M., Weickert, M. O., & Pfeiffer, A. F. H. (2019). Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cereal Fibre in Subjects with Prediabetes—A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients, 11(11), 2726. https://doi.org/10.3390/nu11112726