A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany, a Population with a Western Diet
Abstract
:1. Introduction
2. Pandemic Vitamin D Deficiency: A Short Overview of the Vitamin D Status in Germany, A Country with A Western Diet
3. The Human Vitamin D Endocrine System (VDES): Molecular Biology of an Ancient Friend, Revisited
4. How Can a Healthy Vitamin D Status Be Achieved and Maintained? Relevance of Supplements and Dietary Intake
4.1. Ingestion, Absorption and Bioavailability of Vitamin D
4.2. The Role of Vitamin D2
4.3. Vitamin D from Supplements
4.4. Vitamin D from Diet
4.5. Vitamin D Food Fortification
5. Vitamin D Status in Humans: Relevance of UVB-induced Cutaneous Vitamin D Production
6. Conclusions: A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany
Author Contributions
Funding
Conflicts of Interest
References
- Diamond, J. Geography and skin colour. Nature 2005, 435, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G.; Chaplin, G. The evolution of human skin coloration. J. Hum. Evol. 2000, 39, 57–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. Vitamin D: A D-lightful solution for health. J. Investig. Med. 2011, 59, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Saternus, R.; Vogt, T.; Reichrath, J. Skin Types, Skin Pigmentation and Melanin Synthesis: Important Tools of Human Skin to Adapt at UV-Radiation. Akt. Dermatol. 2018, 44, 210–215. [Google Scholar]
- Holick, M.F.; Vitamin, D. A D-Lightful health perspective. Nutr. Rev. 2008, 66, 182–194. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Whitfield, K.; Wetterslev, J.; Simonetti, R.G.; Bjelakovic, M.; Gluud, C. Vitamin D Supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; et al. Supplementation and Prevention of Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 520–530. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.K.; Janjetovic, Z.; Brożyna, A.A.; Żmijewski, M.A.; Xu, H.; Sutter, T.R.; Tuckey, R.C.; Jetten, A.M.; Crossman, D.K. Differential and Overlapping Effects of 20,23(OH)2D3 and 1,25(OH)2D3 on Gene Expression in Human Epidermal Keratinocytes. Identification of AhR as an Alternative Receptor for 20,23(OH)2D3. Int. J. Mol. Sci. 2018, 19, 3072. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.K.; Hobrath, J.V.; Oak, A.S.W.; Tang, E.K.Y.; Tieu, E.W.; Li, W.; Tuckey, R.C.; Jetten, A.M. Endogenously produced nonclassical vitamin D hydroxy-metabolites act as “biased” agonists on VDR and inverse agonists on RORα and RORγ. J. Steroid Biochem. Mol. Biol. 2017, 173, 42–56. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.K.; Takeda, Y.; Janjetovic, Z.; Brozyna, A.A.; Skobowiat, C.; Wang, J.; Postlethwaite, A.; Li, W.; Tuckey, R.C.; et al. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy and 20,23-dihydroxyvitamin D. FASEB J. 2014, 28, 2775–2789. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, W.Z.; Hegazy, R.A. Vitamin D and the skin: Focus on a complex relationship: A review. J. Adv. Res. 2015, 6, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Uhoda, I.; Quatresooz, P.; Rorive, A.; Piérard-Franchimont, C.; Piérard, G.E. Skin cancer and sunlight. Rev. Med. Liege 2005, 60 (Suppl. 1), 88–98. [Google Scholar]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Zittermann, A.; Trummer, C.; Theiler-Schwetz, V.; Lerchbaum, E.; Keppel, M.H.; Grübler, M.R.; März, W.; Pandis, M. Vitamin D testing and treatment: A narrative review of current evidence. Endocr. Connect. 2019, 8, R27–R43. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D status: Measurement, interpretation and clinical application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Gesundheitsamt Bremen. Available online: https://www.gesundheitsamt.bremen.de/referenzwerte_fuer_vitamin_d-5691 (accessed on 25 August 2019).
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D Toxicity–A Clinical Perspective. Front. Endocrinol. 2018, 9, 550. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef]
- Melamed Ml Michos, E.D.; Post, W.; Astor, B. 25-hydroxyl Vitamin D Levels and the Risk of Mortality in the General Population. Arch. Intern. Med. 2008, 168, 1629–1637. [Google Scholar] [CrossRef]
- Grant, W.B.; Karras, S.N.; Bischoff-Ferrari, H.A.; Annweiler, C.; Boucher, B.J.; Juzeniene, A.; Garland, C.F.; Holick, M.F. Do studies reporting ‘U’-shaped serum 25-hydroxyvitamin D–health outcome relationships reflect adverse effects? Dermato-endocrinology 2016, 8, e1187349. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Baggerly, L.L.; Garland, C.F.; Gorham, E.D.; Hollis, B.W.; Trump, D.L.; Lappe, J.M. Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations ≥60 vs. <20 ng/ml (150 vs. 50 nmol/L): Pooled analysis of two randomized trials and a prospective cohort. PLoS ONE 2018, 13, e0199265. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, S.L.; Baggerly, K.A.; Baggerly, C.A.; Aliano, J.L.; French, C.B.; Baggerly, L.L.; Ebeling, M.D.; Rittenberg, C.S.; Goodier, C.G.; Mateus Niño, J.F.; et al. Maternal 25(OH)D concentrations ≥40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center. PLoS ONE 2017, 12, e0180483. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, S.L.; Baggerly, C.; French, C.B.; Baggerly, L.L.; Garland, C.F.; Gorham, E.D.; Lappe, J.M.; Heaney, R.P. Serum 25-Hydroxyvitamin D Concentrations ≥40 ng/ml Are Associated with >65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study. PLoS ONE 2016, 11, e0152441. [Google Scholar] [CrossRef]
- Mirhosseini, N.; Vatanparast, H.; Kimball, S.M. The Association between Serum 25(OH)D Status and Blood Pressure in Participants of a Community-Based Program Taking Vitamin D Supplements. Nutrients 2017, 9, 1244. [Google Scholar] [CrossRef]
- Garland, C.F.; Kim, J.J.; Mohr, S.B.; Gorham, E.D.; Grant, W.B.; Giovannucci, E.L.; Baggerly, L.; Hofflich, H.; Ramsdell, J.W.; Zeng, K.; et al. Meta-analysis of all-cause mortality according to serum 25-hydroxyvitamin D. Am. J. Public Health 2014, 104, e43–e50. [Google Scholar] [CrossRef]
- Hollis, B.W. Comparison of Commercially Available 125I-based RIA Methods for the Determination of Circulating 25-Hydroxyvitamin D. Clin. Chem. 2000, 46, 1657–1661. [Google Scholar]
- Le Goffa, C.; Cavaliera, E.; Souberbielleb, J.C.; González-Antuñaa, A.; Delvinc, E. Measurement of circulating 25-hydroxyvitamin D. A historical review. Pract. Lab. Med. 2015, 2, 1–14. [Google Scholar] [CrossRef]
- Hintzpeter, B.; Volkert, D. Vitamin D-Versorgung in Deutschland. In Vitamin D und Prävention Ausgewählter Chronischer Krankheiten; der Deutschen Gesellschaft für Ernährung: Bonn, Germany, 2011. [Google Scholar]
- Hintzpeter, B.; Mensink, G.B.; Thierfelder, W.; Müller, M.J.; Scheidt-Nave, C. Vitamin D status and health correlates among German adults. Eur. J. Clin. Nutr. 2008, 62, 1079–1089. [Google Scholar] [CrossRef]
- Rabenberg, M.; Scheidt-Nave, C.; Busch, M.A.; Rieckmann, N.; Hintzpeter, B.; Mensink, G.B.M. Vitamin D status among adults in Germany—Results from the German Health Interview and Examination Survey for Adults (DEGS1). BMC Public Health 2015, 15, 641. [Google Scholar] [CrossRef]
- Diekmann, R.; Winning, K.; Bauer, J.M.; Uter, W.; Stehle, P.; Lesser, S.; Bertsch, T.; Sieber, C.C.; Volkert, D. Vitamin D status and physical function in nursing home residents: A 1-year observational study. Zeitschrift für Gerontologie und Geriatrie 2013, 46, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Saeglitz, C. Mangelernährung bei Geriatrischen Patienten im Krankenhaus—Prävalenz, Mögliche Ursachen, Übliche Therapie und Prognostische Bedeutung. Ph.D. Thesis, Universität Bonn, Bonn, Germany, 2007. [Google Scholar]
- Linseisen, J.; Bechthold, A.; Bischoff-Ferrari, H.A.; Hintzpeter, B.; Leschik-Bonnet, E.; Reichrath, J.; Stehle, P.; Volkert, D.; Wolfram, G.; Zittermann, A. Vitamin D und Prävention Ausgewählter Chronischer Krankheiten; Deutsche Gesellschaft für Ernährung: Bonn, Germany, 2011. [Google Scholar]
- Zittermann, A.; von Helden, R.; Grant, W.B.; Kipshoven, C.; Ringe, J.D. An estimate of the survival benefit of improving vitamin D status in the adult German population. Dermato-endocrinology 2009, 6, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Krist, L.; Keller, T.; Becher, H.; Jöckel, K.H.; Schlaud, M.; Willich, S.N.; Keil, T. Serum vitamin D levels in Berliners of Turkish descent—A cross-sectional study. BMC Public Health 2019, 19, 119. [Google Scholar] [CrossRef] [PubMed]
- Hintzpeter, B.; Scheidt-Nave, C.; Müller, M.J.; Schenk, L.; Mensink, G.B. Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J. Nutr. 2008, 138, 1482–1490. [Google Scholar] [CrossRef]
- Norman, A.W. From vitamin D to hormone: Fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 2008, 88, 4915–4995. [Google Scholar] [CrossRef]
- Chen, T.C.; Lu, Z.; Holick, M.F. Photobiology of Vitamin D. In Nutrition and Health: Vitamin D Physiology, Molecular Biology, and Clinical Applications, 2nd ed.; Holick, M.F., Ed.; Springer: New York, NY, USA, 2010; pp. 35–60. [Google Scholar]
- Lehmann, B.; Querings, K.; Reichrath, J. Vitamin D and skin. New aspects for dermatology. Exp. Dermatol. 2004, 13 (Suppl. 4), 11–15. [Google Scholar] [CrossRef]
- Holick, M.F. Resurrection of vitamin D deficiency and rickets. J. Clin. Investig. 2006, 116, 2062–2072. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency. A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef]
- Shinkyo, R.; Sakaki, T.; Kamakura, M.; Ohta, M.; Inouye, K. Metabolism of vitamin D by human microsomal CYP2R1. Biochem. Biophys. Res. Commun. 2004, 324, 451–457. [Google Scholar] [CrossRef]
- Chun, R.F.; Peercy, B.E.; Orwoll, E.S.; Nielson, C.M.; Adams, J.S.; Hewison, M. Vitamin D and DBP: The free hormone hypothesis revisited. J. Steroid Biochem. Mol. Biol. 2014, 144, 132–137. [Google Scholar] [CrossRef]
- Negri, A.L. Proximal tubule endocytic apparatus as the specific renal uptake mechanism for vitamin D-binding protein/25(OH)D3 complex. Nephrology 2006, 11, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Leheste, J.R.; Rolinski, B.; Vorum, H.; Hilpert, J.; Nykjaer, A.; Jacobsen, C.; Aucouturier, P.; Moskaug, J.Ø.; Otto, A.; Christensen, E.I.; et al. Megalin Knockout Mice as an Animal Model of Low Molecular Weight Proteinuria. Am. J. Pathol. 1999, 155, 1361–1370. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.Q.; Sun, H.L.; He, B.S.; Pan, Y.Q.; Qang, F.; Deng, Q.W.; Chen, J.; Liu, X.; Wang, S.K. Circulating vitamin D binding protein, total, free and bioavailable 25-hydroxyvitamin D and risk of colorectal cancer. Sci. Rep. 2015, 5, 7956. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Kim, T.K.; Li, W.; Postlethwaite, A.; Tieu, E.W.; Tang, E.K.; Tuckey, R.C. Detection of novel CYP11A1derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci. Rep. 2015, 5, 14875. [Google Scholar] [CrossRef]
- Slominski, A.; Zjawiony, J.; Wortsman, J.; Semak, I.; Stewart, J.; Pisarchik, A.; Sweatman, T.; Marcos, J.; Dunbar, C.; CTuckey, R. A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. Eur. J. Biochem. 2004, 271, 4178–4188. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.L.; Auchus, R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef] [Green Version]
- Guryev, O.; Carvalho, R.A.; Usanov, S.; Gilep, A.; Estabrook, R.W. A pathway for the metabolism of vitamin D3: Unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc. Natl. Acad. Sci. USA 2003, 100, 14754–14759. [Google Scholar] [CrossRef]
- Slominski, A.T.; Li, W.; Kim, T.K.; Semak, I.; Wang, J.; Zjawiony, J.K.; Tuckey, R.C. Novel activities of CYP11A1 and their potential physiological significance. J. Steroid Biochem. Mol. Biol. 2005, 151, 25–37. [Google Scholar] [CrossRef]
- Rosen, C.J.; Adams, J.S.; Bikle, D.D.; Black, D.M.; Demay, M.B.; Manson, J.E.; Murad, M.H.; Kovacs, C.S. The nonskeletal effects of vitamin D: An Endocrine Society scientific statement. Endocr. Rev. 2012, 33, 456–492. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Ernährung e.V. 2019. Available online: https://www.dge.de/wissenschaft/referenzwerte/vitamin-d/ (accessed on 30 October 2019).
- Bundesforschungsinstitut für Ernährung und Lebensmittel. Nationale Verzehrstudie II Max Rubner-Institut Ergebnisbericht, Teil 2; Bundesforschungsinstitut für Ernährung und Lebensmittel: Karlsruhe, Germany, 2008. [Google Scholar]
- Reinehr, T.; Schnabel, D.; Wabitsch, M.; Bechtold-Dalla Pozzalla, S.; Bührer, C.; Heidtmann, B.; Jochum, F.; Kauth, T.; Körner, A.; Mihatsch, W.; et al. Vitamin-D-Supplementierung jenseits des zweiten Lebensjahres—Gemeinsame Stellungnahme der Ernährungskommission der Deutschen Gesellschaft für Kinder-und Jugendmedizin (DGKJe.V.) und der Deutschen Gesellschaft für Kinderendokrinologie und Diabetologie (DGKEDe.V.). Monatsschrift Kinderheilkunde 2018, 166, 814–822. [Google Scholar]
- IOM (Institute of Medicine). Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Keegan, R.J.H.; Lu, Z.; Bogusz, J.M.; Williams, J.E.; Holick, M.F. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermato-Endocrinology 2013, 1, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.K.; Aggarwa, M. Factors influencing the absorption of vitamin D in GIT: An overview. J. Food Sci. Technol. 2017, 54, 3753–3765. [Google Scholar] [CrossRef] [PubMed]
- Reboul, E.; Goncalves, A.; Comera, C.; Bott, R.; Nowicki, M.; Landrier, J.F.; Jourdheuil-Rahmani, D.; Dufour, C.; Collet, X.; Borel, P. Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Mol. Nutr. Food Res. 2011, 55, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Niramitmahapanya, S.; Harris, S.S.; Dawson-Hughes, B. Type of Dietary Fat Is Associated with the 25-Hydroxyvitamin D3 Increment in Response to Vitamin D Supplementation. J. Clin. Endocrinol. Metab. 2011, 96, 3170–3174. [Google Scholar] [CrossRef]
- Holick, M.F. Cancer, sunlight and Vitamin D. J. Clin. Trial Transl. Endocrinol. 2014, 5, 179–186. [Google Scholar] [CrossRef]
- Hymøller, L.; Jensen, S.K. 25-hydroxyvitamin D circulates in different fractions of calf plasma if the parent compound is vitamin D2 or vitamin D3, respectively. J. Dairy Res. 2016, 83, 67–71. [Google Scholar] [CrossRef]
- Hammami, M.M.; Yusuf, A. Differential effects of vitamin D2 and D3 supplements on 25-hydroxyvitamin D level are dose, sex, and time dependent: A randomized controlled trial. BMC Endocr. Disord. 2017, 24, 17. [Google Scholar] [CrossRef]
- Slominski, A.; Semak, I.; Zjawiony, J.; Wortsman, J.; Gandy, M.N.; Li, J.; Zbytek, B.; Li, W.; Tuckey, R.C. Enzymatic Metabolism of Ergosterol by Cytochrome P450scc to Biologically Active 17,24-Dihydroxyergosterol. Chem. Biol. 2005, 12, 931–939. [Google Scholar] [CrossRef]
- Tuckey, R.C.; Nguyen, M.N.; Chen, J.; Slominski, A.T.; Baldisseri, D.M.; Tieu, E.W.; Zjawiony, J.K.; Li, W. Human Cytochrome P450scc (CYP11A1) Catalyzes Epoxide Formation with Ergosterol. Drug Metab. Dispos. 2012, 40, 436–444. [Google Scholar] [CrossRef]
- Wilson, L.R.; Tripkovic, L.; Hart, K.H.; Lanham-New, S.A. Vitamin D deficiency as a public health issue: Using vitamin D2 or vitamin D3 in future fortification strategies. Proc. Nutr. Soc. 2017, 76, 392–399. [Google Scholar] [CrossRef]
- Armas, L.A.; Hollis, B.W.; Heaney, R.P. Vitamin D2 is much less effective than vitamin D3 in humans. J. Clin. Endocrinol. Metab. 2004, 89, 5387–5391. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Gemar, D.; Engelke, J.; Gangnon, R.; Ramamurthy, R.; Krueger, D.; Drezner, M.K. Evaluation of ergocalciferol or cholecalciferol dosing, 1600 IU daily or 50,000 IU monthly in older adults. J. Clin. Endocrinol. Metab. 2011, 96, 981–988. [Google Scholar] [CrossRef]
- Tripkovic, L.; Wilson, L.R.; Hart, K.; Johnsen, S.; de Lusignan, S.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Elliott, R.; et al. Daily supplementation with 15 μg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: A 12-wk randomized, placebo-controlled food-fortification trial. Am. J. Clin. Nutr. 2017, 106, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Thummel, K.E.; Wang, Z.; Jolliffe, D.A.; Boucher, B.J.; Griffin, S.J.; Forouhi, N.G.; Hitman, G.A. Differential effects of oral boluses of vitamin D2 versus vitamin D3 on vitamin D metabolism: A randomized controlled trial. J. Clin. Endocrinol. Metab. 2019, 104, 5831–5839. [Google Scholar] [CrossRef] [PubMed]
- Hammami, M.M.; Abuhdeeb, K.; Hammami, S.; Yusuf, A. Vitamin-D2 treatment-associated decrease in 25(OH)D3 level is a reciprocal phenomenon: A randomized controlled trial. BMC Endocr. Disord. 2019, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Theodoratou, E.; Tzoulaki, I.; Zgaga, L.; Ioannidis, J.P. Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials. BMJ 2014, 348, g2035. [Google Scholar] [CrossRef] [PubMed]
- Beitz, R.; Mensink, G.B.M.; Rams, S.; Döring, A. Vitamin-und Mineralstoffsupplementierung in Deutschland. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 2004, 47, 1057–1065. [Google Scholar] [CrossRef]
- Wylon, K.; Drozdenko, G.; Krannich, A.; Heine, G.; Do, S.; Worm, M. Pharmacokinetic Evaluation of a Single Intramuscular High Dose versus an Oral LongTerm Supplementation of Cholecalciferol. PLoS ONE 2017, 12, e0169620. [Google Scholar] [CrossRef]
- Gupta, N.; Farooqui, K.J.; Batra, C.M.; Marwaha, R.K.; Mithal, A. Effect of oral versus intramuscular Vitamin D replacement in apparently healthy adults with Vitamin D deficiency. Indian J. Endocrinol. Metab. 2017, 21, 131–136. [Google Scholar]
- Garland, C.F.; French, C.B.; Baggerl, L.L.; Heaney, R.P. Vitamin D Supplement Doses and Serum 25-Hydroxyvitamin D in the Range Associated with Cancer Prevention. Anticancer Res. 2011, 31, 607–612. [Google Scholar]
- Zittermann, A.; Ernst, J.B.; Gummert, J.F.; Börgermann, J. Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: A systematic review. Eur. J. Nutr. 2014, 53, 367–374. [Google Scholar] [CrossRef] [PubMed]
- De Niet, S.; Coffiner, M.; Da Silva, S.; Jandrain, B.; Souberbielle, J.C.; Cavalier, E. A Randomized Study to Compare a Monthly to a Daily Administration of Vitamin D3 Supplementation. Nutrients 2018, 10, 659. [Google Scholar] [CrossRef] [PubMed]
- Kearns, M.D.; Alvarez, J.A.; Tangpricha, V. Large, single-dose, oral vitamin D supplementation in adult populations: A systematic review. Endocr. Pract. 2014, 20, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Xiao, C.; Aitken, D.; Jones, G.; Winzenberg, T. The optimal dosage regimen of vitamin D supplementation for correcting deficiency in adolescents: A pilot randomized controlled trial. Eur. J. Clin. Nutr. 2018, 72, 534–540. [Google Scholar] [CrossRef]
- Takacs, I.; Toth, B.E.; Szekeres, L.; Szabo, B.; Bakos, B.; Lakatos, P. Randomized clinical trial to comparing efficacy of daily, weekly and monthly administration of vitamin D3. Endocrine 2017, 55, 60–65. [Google Scholar] [CrossRef]
- Rossini, M.; Gatti, D.; Viapiana, O.; Fracassi, E.; Idolazzi, L.; Zanoni, S.; Adami, S. Short-Term Effects on Bone Turnover Markers of a Single High Dose of Oral Vitamin D3. J. Clin. Endocrinol. Metab. 2012, 97, E622–E626. [Google Scholar] [CrossRef]
- Debasish, M. Vitamin D toxicity. Indian J. Endocrinol. Metab. 2012, 16, 295–296. [Google Scholar]
- Gallagher, J.; Smith, L.M.; Yalamanchili, V. Incidence of hypercalciuria and hypercalcemia during vitamin D and calcium Supplementation in older women. Menopause 2014, 21, 1173–1180. [Google Scholar] [CrossRef]
- Marcus, J.F.; Shalev, S.M.; Harris, C.A.; Goodin, D.S.; Josephson, S.A. Severe Hypercalcemia Following Vitamin D Supplementation in a Patient with Multiple Sclerosis—A Note of Caution. Arch. Neurol. 2012, 69, 129–132. [Google Scholar] [CrossRef]
- Letavernier, E.; Daudon, M. Vitamin D, Hypercalciuria and Kidney Stones. Nutrients 2018, 10, 366. [Google Scholar] [CrossRef]
- Malihi, Z.; Wu, Z.; Stewart, A.W.; Lawes, C.M.M.; Scragg, R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 104, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Kahwati, L.C.; Weber, R.P.; Pan, H.; Gourlay, M.; LeBlanc, E.; Coker-Schwimmer, M.; Viswanathan, M. Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 319, 1600–1612. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Vitamin D Intake and the Risk of Incident Kidney Stones. J. Urol. 2017, 197, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Malihi, Z.; Wu, Z.; Lawes, C.M.M.; Scragg, R. Adverse events from large dose vitamin D supplementation taken for one year or longer. J. Steroid Biochem. Mol. Biol. 2019, 188, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Mazess, R.B.; Elangovan, L. A review of intravenous versus oral vitamin D hormone therapy in hemodialysis patients. Clin. Nephrol. 2003, 59, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlop, E.; Cunningham, J.; Sherriff, J.L.; Lucas, R.M.; Greenfield, H.; Arcot, J.; Strobel, N.; Black, L.J. Vitamin D3 and 25-Hydroxyvitamin D3 Content of Retail White Fish and Eggs in Australia. Nutrients 2017, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Arcot, J.; Cunningham, J.; Greenfield, H.; Hsu, J.; Padula, D.; Strobel, N.; Fraser, D.R. New data for vitamin D in Australian foods of animal origin: Impact on estimates of national adult vitamin D intakes in 1995 and 2011-13. Asia Pac. J. Clin. Nutr. 2015, 24, 464–471. [Google Scholar]
- Crowe, F.L.; Steur, M.; Allen, N.E.; Appleby, P.N.; Travis, R.C.; Key, T.J. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC–Oxford study. Public Health Nutr. 2011, 14, 340–346. [Google Scholar] [CrossRef]
- Grant, W.B.; Fakhoury, H.M.A.; Karras, S.N.; Al Anouti, F.; Bhattoa, H.P. Variations in 25-Hydroxyvitamin D in Countries from the Middle East and Europe: The Roles of UVB Exposure and Diet. Nutrients 2019, 11, 2065. [Google Scholar] [CrossRef]
- Kuchuk, N.O.; van Schoor, N.M.; Pluijm, S.M.; Chines, A.; Lips, P. Vitamin D status, parathyroid function, bone turnover, and BMD in postmenopausal women with osteoporosis: Global perspective. J. Bone Miner. Res. 2009, 24, 693–701. [Google Scholar] [CrossRef]
- Mensink, G.B.M.; Heseker, H.; Stahl, A.; Richter, A.; Vohmann, C. Die aktuelle Nährstoffversorgung von Kindern und Jugendlichen in Deutschland. Ergebnisse aus EsKiMo. Ernährungs Umschau 2017, 11, 636–646. [Google Scholar]
- Pilz, S.; März, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. 2018, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Bromage, S.; Ganmaa, D.; Rich-Edwards, J.W.; Rosner, B.; Bater, J.; Fawzi, W.W. Projected effectiveness of mandatory industrial fortification of wheat flour, milk, and edible oil with multiple micronutrients among Mongolian adults. PLoS ONE 2018, 13, e0201230. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.M.; Kazantzidis, A.; Kiely, M.; Cox, L.; Meadows, S.; Goldberg, G.; Prentice, A.; Kift, R.; Webb, A.R.; Cashman, K.D. A predictive model of serum 25-hydroxyvitamin D in UK white as well as black and Asian minority ethnic population groups for application in food fortification strategy development towards vitamin D deficiency prevention. J. Steroid Biochem. Mol. Biol. 2017, 173, 245–252. [Google Scholar] [CrossRef]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.R.; Bianchi, M.; Stepan, J.; El-Hajj Fuleihan, G.; Bouillon, R. Management of endocrine disease: Vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency; a position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019. [Google Scholar] [CrossRef]
- Calvo, M.S.; Whiting, S.J. Survey of current vitamin D food fortification practices in the United States and Canada. J. Steroid Biochem. Mol. Biol. 2013, 136, 211–213. [Google Scholar] [CrossRef]
- Jääskeläinen, T.; Itkonen, S.T.; Lundqvist, A.; Erkkola, M.; Koskela, T.; Lakkala, K.; Dowling, K.G.; Hull, G.L.; Kröger, H.; Karppinen, J.; et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: Evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am. J. Clin. Nutr. 2017, 105, 1512–1520. [Google Scholar] [CrossRef]
- Grønborg, I.M.; Tetens, I.; Christensen, T.; Andersen, E.W.; Jakobsen, J.; Kiely, M.; Cashman, K.D.; Andersen, R. Vitamin D-fortified foods improve wintertime vitamin D status in women of Danish and Pakistani origin living in Denmark: A randomized controlled trial. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Grønborg, I.M.; Tetens, I.; Ege, M.; Christensen, T.; Andersen, E.W.; Andersen, R. Modelling of adequate and safe vitamin D intake in Danish women using different fortification and supplementation scenarios to inform fortification policies. Eur. J. Nutr. 2019, 58, 227–232. [Google Scholar] [CrossRef]
- Kiely, M.; Cashman, K.D. Summary Outcomes of the ODIN Project on Food Fortification for Vitamin D Deficiency Prevention. Int. J. Environ. Res. Public Health 2018, 15, 2342. [Google Scholar] [CrossRef]
- Keller, A.; Stougård, M.; Frederiksen, P.; Thorsteinsdottir, F.; Vaag, A.; Damm, P.; Jacobsen, R.; Heitmann, B.L. In utero exposure to extra vitamin D from food fortification and the risk of subsequent development of gestational diabetes: The D-tect study. Nutr. J. 2018, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G.; Chaplin, G. Colloquium paper: Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA 2010, 107 (Suppl. 2), 8962–8968. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Kline, L.; Holick, M.F. Influence of season and latitude on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab. 1988, 67, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Bais, A.F.; Lucas, R.M.; Bornman, J.F.; Williamson, C.E.; Sulzberger, B.; Austin, A.T.; Wilson, S.R.; Andrady, A.L.; Bernhard, G.; McKenzie, R.L.; et al. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem. Photobiol. Sci. 2018, 17, 127–179. [Google Scholar] [CrossRef] [PubMed]
- Engelsen, O.; Brustad, M.; Aksnes, L.; Lund, E. Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem. Photobiol. 2005, 81, 1287–1290. [Google Scholar] [CrossRef]
- Saternus, R.; Pilz, S.; Gräber, S.; Kleber, M.; März, W.; Vogt, T.; Reichrath, J. A closer look at evolution: Variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration. Endocrinology 2015, 156, 39–47. [Google Scholar] [CrossRef]
- Rossberg, W.; Saternus, R.; Wagenpfeil, S.; Kleber, M.; März, W.; Reichrath, S.; Vogt, T.; Reichrath, J. Human Pigmentation, Cutaneous Vitamin D Synthesis and Evolution: Variants of Genes (SNPs) Involved in Skin Pigmentation Are Associated with 25(OH)D Serum Concentration. Anticancer Res. 2016, 36, 1429–1437. [Google Scholar]
- Yeum, K.J.; Dawson-Hughes, B.; Joo, N.S. Fat Mass Is Associated with Serum 25-Hydroxyvitamin D Concentration Regardless of Body Size in Men. Nutrients 2018, 10, 850. [Google Scholar] [CrossRef]
- Jager, N.; Schöpe, J.; Wagenpfeil, S.; Bocionek, P.; Saternus, R.; Vogt, T.; Reichrath, J. The Impact of UV-dose, Body Surface Area Exposed and Other Factors on Cutaneous Vitamin D Synthesis Measured as Serum 25(OH)D Concentration: Systematic Review and Meta-analysis. Anticancer Res. 2018, 38, 1165–1171. [Google Scholar]
- Xiang, F.; Lucas, R.; de Gruijl, F.; Norva, M. A systematic review of the influence of skin pigmentation on changes in the concentrations of vitamin D and 25-hydroxyvitamin D in plasma/serum following experimental UV irradiation. Photochem. Photobiol. Sci. 2015, 14, 2138–2146. [Google Scholar] [CrossRef] [Green Version]
- Hakim, O.A.; Hart, K.; McCabe, P.; Berry, J.; Francesca, R.; Rhodes, L.E.; Spyrou, N.; Alfuraih, A.; Lanham-New, S. Vitamin D production in UK Caucasian and South Asian women following UVR exposure. J. Steroid Biochem. Mol. Biol. 2016, 164, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, L.Y.; Ide, L.; Wortsman, J.; MacLaughlin, J.A.; Holick, M.F. Sunscreens suppress cutaneous vitamin D3 synthesis. J. Clin. Endocrinol. Metab. 1987, 64, 1165–1168. [Google Scholar] [CrossRef]
- Young, A.R.; Narbutt, J.; Harrison, G.I.; Lawrence, K.P.; Bell, M.; O’Connor, C.; Olsen, P.; Grys, K.; Baczynska, K.A.; Rogowski-Tylman, M.; et al. Optimal sunscreen use, during a sun holiday with a very high ultraviolet index, allows vitamin D synthesis without sunburn. Br. J. Dermatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Bouillon, R.; Callender, V.; Cestari, T.; Diepgen, T.L.; Green, A.C.; van der Pols, J.C.; Bernard, B.A.; Ly, F.; Bernerd, F.; et al. Sunscreen photoprotection and vitamin D status. Br. J. Dermatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; MacLaughlin, J.A.; Doppelt, S.H. Regulation of cutaneous previtamin D3 photosynthesis in man: Skin pigment is not an essential regulator. Science 1981, 211, 590–593. [Google Scholar] [CrossRef]
- Van Dijk, A.; den Outer, P.; van Kranen, H.; Slaper, H. The action spectrum for vitamin D3: Initial skin reaction and prolonged exposure. Photochem. Photobiol. Sci. 2016, 15, 896–909. [Google Scholar] [CrossRef]
- Webb, A.R.; Decosta, B.R.; Holick, M.F. Sunlight Regulates the Cutaneous Production of Vitamin D3 by Causing Its Photodegradation. J. Clin. Endocrinol. Metab. 1989, 68, 882–887. [Google Scholar] [CrossRef]
- Engelsen, O. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Heckman, C.J.; Chandler, R.; Kloss, J.D.; Benson, A.; Rooney, D.; Munshi, T.; Darlow, S.D.; Perlis, C.; Manne, S.L.; Oslin, D.W. Minimal Erythema Dose (MED) Testing. J. Vis. Exp. 2013, 28, e50175. [Google Scholar] [CrossRef]
- Diffey, B.L.; Jansén, C.T.; Urbach, F.; Wulf, H.C. The standard erythema dose: A new photobiological concept. Photodermatol. Photoimmunol. Photomed. 1997, 13, 64–66. [Google Scholar] [CrossRef]
- Harrison, G.I.; Young, A.R. Ultraviolet radiation-induced erythema in human skin. Methods 2002, 28, 14–19. [Google Scholar] [CrossRef]
- Rhodes, L.E.; Webb, A.R.; Fraser, H.I.; Kift, R.; Durkin, M.T.; Allan, D.; O’Brien, S.J.; Vail, A.; Berry, J.L. Recommended Summer Sunlight Exposure Levels Can Produce Sufficient (≥20 ng/ml) but Not the Proposed Optimal (≥32 ng/ml) 25(OH)D Levels at UK Latitudes. J. Investig. Dermatol. 2010, 130, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Kift, R.; Berry, J.L.; Rhodes, L.E. The vitamin D debate: Translating controlled experiments into reality for human sun exposure times. Photochem. Photobiol. 2011, 87, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Narbutt, J.; Philipsen, P.A.; Lesiak, A.; Sandberg Liljendahl, T.; Segerbäck, D.; Heydenreich, J.; Chlebna-Sokol, D.; Olsen, P.; Harrison, G.I.; Pearson, A.; et al. Children sustain high levels of skin DNA photodamage, with a modest increase of serum 25-hydroxyvitamin D3, after a summer holiday in Northern Europe. Br. J. Dermatol. 2018, 179, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Postlethwaite, A.E.; Slominski, A.T. Skin Exposure to Ultraviolet B Rapidly Activates Systemic Neuroendocrine and Immunosuppressive Responses. Photochem. Photobiol. 2017, 93, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef]
- Holme, S.A.; Anstey, A.V.; Badminton, M.N.; Elder, G.H. Serum 25-hydroxyvitamin D in erythropoietic protoporphyria. Br. J. Dermatol. 2008, 159, 211–213. [Google Scholar] [CrossRef] [PubMed]
25(OH)D [nmol/L] | Age 1–17 Years | Age 18–79 Years | ||||
---|---|---|---|---|---|---|
All (n = 10,015) | Male (n = 5107) | Female (n = 4908) | All (n = 3917) | Male (n = 1706) | Female (n = 2211) | |
<12.5 | 3.8% | 3.6% | 4.0% | 2.0% | 2.2% | 1.9% |
12.5 to<25 | 15.5% | 15.6% | 15.4% | 14.3% | 13.4% | 15.1% |
25 to<50 | 43.7% | 42.9% | 44.5% | 41.0% | 41.2% | 40.8% |
50 to<75 | 22.8% | 23.3% | 22.3% | 20.8% | 22.6% | 19.1% |
>75 | 14.2% | 14.6% | 13.8% | 21.9% | 20.6% | 23.1% |
Food (100 g) | Vitamin D3 | 25(OH)D3 |
---|---|---|
Raw eggs | 12–100 IU (0.3–2.5 µg) | 0.1–1.5 µg |
Cooked eggs | 12–92 IU (0.3–2.30 µg) | 0.18–1.2 µg |
Raw white fish | 4–188 IU (0.1–4.7 µg) | 0.30–0.70 µg |
Cooked white fish | 4–232 IU (0.1–5.8 µg) | 0.35–0.60 µg |
Beef | 4.4–5.6 IU (0.11–0.14 µg) | 0.15–0.16 µg |
Lamb | 6.8–10.8 IU (0.17–0.27 µg) | 0.16–0.18 µg |
Chicken | 11.6–17.6 (0.29–0.44 µg) | 0.36–0.51 µg |
Pork | 7.2 IU (0.18 µg) | 0.17 µg |
Food | Approximate Vitamin D content |
---|---|
Fresh, wild Salmon (99.05 g) | 600–1000 IU |
Fresh, farmed salmon (99.05 g) | 100–250 IU |
Canned salmon (99.05 g) | 300–600 IU |
Canned sardines (99.05 g) | 300 IU |
Canned mackerel (99.05 g) | 250 IU |
Canned Tuna (101.88 g) | 230 IU |
Cod liver (1 teaspoon) | 400–1000 IU |
Fresh shiitake mushrooms (99.05 g) | 100 IU |
Sun-dried shiitake mushrooms (99.05 g) | 1600 IU |
Egg yolk | 20 IU |
Parameter | Cutaneous Vitamin D Production | Oral Intake (Food and Supplements) |
---|---|---|
Vitamin D compounds | Exclusively D3 analogues | D3 and D2 analogues |
Skin damage | Risk of sunburn, skin cancer and actinic damage | - |
Risk of intoxication | In healthy individuals, no risk for UVB-induced vitamin D intoxication | Risk of intoxication (only by supplements with very high doses of vitamin D) |
Accessibility | Ubiquitously available in summer months | Low amount of vitamin D contents in food |
Limitation factors | Many individual limitation factors such as age, pigmentation, season, geographic and meteorological factors | Reduced absorption in patients with malabsorption syndromes |
Other effects | Other positive UVB-induced actions, e.g., secretion of β-endorphin Synthesis of many vitamin D compounds with unknown physiologic relevance | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saternus, R.; Vogt, T.; Reichrath, J. A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany, a Population with a Western Diet. Nutrients 2019, 11, 2682. https://doi.org/10.3390/nu11112682
Saternus R, Vogt T, Reichrath J. A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany, a Population with a Western Diet. Nutrients. 2019; 11(11):2682. https://doi.org/10.3390/nu11112682
Chicago/Turabian StyleSaternus, Roman, Thomas Vogt, and Jörg Reichrath. 2019. "A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany, a Population with a Western Diet" Nutrients 11, no. 11: 2682. https://doi.org/10.3390/nu11112682
APA StyleSaternus, R., Vogt, T., & Reichrath, J. (2019). A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany, a Population with a Western Diet. Nutrients, 11(11), 2682. https://doi.org/10.3390/nu11112682