Association between the Prognostic Nutritional Index and Dietary Intake in Community-Dwelling Older Adults with Heart Failure: Findings from NHANES III
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Analytic Sample
2.3. Variables
2.3.1. Nutritional Status
2.3.2. Dietary and Food Group Intake
2.3.3. Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report from the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Huffman, M.D.; Berry, J.D.; Ning, H.; Dyer, A.R.; Garside, D.B.; Cai, X.; Daviglus, M.L.; Lloyd-Jones, D.M. Lifetime risk of heart failure among White and Black Americans. J. Am. Coll. Cardiol. 2013, 61, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.D.S.; Gibbs, C.R.; Lip, G.Y.H. ABC of heart failure: Clinical features and complications. BMJ 2000, 320, 236–239. [Google Scholar] [CrossRef]
- Nieminen, M.S.; Dickstein, K.; Fonseca, C.; Serrano, J.M.; Parissis, J.; Fedele, F.; Wikström, G.; Agostoni, P.; Atar, S.; Baholli, L.; et al. The patient perspective: Quality of life in advanced heart failure with frequent hospitalisations. Int. J. Cardiol. 2015, 191, 256–264. [Google Scholar] [CrossRef]
- Russo, C.A.; Elixhauser, A. Hospitalizations in the Elderly Population, 2003: Statistical Brief #6. Available online: https://www.ncbi.nlm.nih.gov/books/NBK63501/pdf/Bookshelf_NBK63501.pdf (accessed on 9 September 2019).
- Bocchi, E.A.; Cruz, F.; Guimarães, G.; Pinho Moreira, L.F.; Issa, V.S.; Ayub Ferreira, S.M.; Chizzola, P.R.; Souza, G.E.C.; Brandão, S.; Bacal, F. Long-term prospective, randomized, controlled study using repetitive education at six-month intervals and monitoring for adherence in heart failure outpatients: The REMADHE trial. Circ. Heart Fail. 2008, 1, 115–124. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure. Circulation 2013, 128, e240–e327. [Google Scholar]
- Gupta, D.; Georgiopoulou, V.V.; Kalogeropoulos, A.; Dunbar, S.B.; Reilly, C.; Sands, J.M.; Fonarow, G.C.; Jessup, M.; Gheorghiade, M.; Yancy, C.; et al. Dietary Sodium Intake in Heart Failure. Circulation 2012, 126, 479–485. [Google Scholar] [CrossRef]
- Bonilla-Palomas, J.L.; Gámez-López, A.L.; Anguita-Sánchez, M.P.; Castillo-Domínguez, J.C.; García-Fuertes, D.; Crespin-Crespin, M.; López-Granados, A.; Suárez de Lezo, J. La desnutrición detectada durante la hospitalización incrementa el riesgo de reingreso en pacientes con insuficiencia cardiaca” [Impact of malnutrition on long-term mortality in hospitalized patients with heart failure]. Rev. Esp. Cardiol. 2011, 64, 752–758. [Google Scholar] [CrossRef]
- Bonilla-Palomas, J.L.; Gámez-López, A.L.; Moreno-Conde, M.; López-Ibáñez, M.C.; Castellano-García, P.; Ráez-Ruiz, C.J.; Ruíz-Quirós, R.; Ramiro-Ortega, E. Influencia de la desnutrición sobre la mortalidad a largo plazo en pacientes ambulatorios con insuficiencia cardiaca crónica [Impact of malnutrition on long-term mortality in outpatients with chronic heart failure]. Nutr. Hosp. 2017, 34, 1382–1389. [Google Scholar]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments. Nutrients 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and cachexia in heart failure. JPEN J. Parenter. Enter. Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; Opasich, C.; Verri, M.; Boschi, F.; Febo, O.; Pasini, E.; Pastoris, O. Is nutritional intake adequate in chronic heart failure patients? J. Am. Coll. Cardiol. 2003, 42, 1218–1223. [Google Scholar] [CrossRef] [Green Version]
- Pasini, E.; Opasich, C.; Pastoris, O.; Aquilani, R. Inadequate nutritional intake for daily life activity of clinically stable patients with chronic heart failure. Am. J. Cardiol. 2004, 93, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Sciatti, E.; Lombardi, C.; Ravera, A.; Vizzardi, E.; Bonadei, I.; Carubelli, V.; Gorga, E.; Metra, M. Nutritional Deficiency in Patients with Heart Failure. Nutrients 2016, 8, 442. [Google Scholar] [CrossRef]
- McKeag, N.A.; McKinley, M.C.; Woodside, J.V.; Harbinson, M.T.; McKeown, P.P. The Role of Micronutrients in Heart Failure. J. Acad. Nutr. Diet. 2012, 112, 870–886. [Google Scholar] [CrossRef]
- Lemon, S.C.; Olendzki, B.; Magner, R.; Li, W.; Culver, A.L.; Ockene, I.; Goldberg, R.J. The dietary quality of persons with heart failure in NHANES 1999–2006. J. Gen. Intern. Med. 2010, 25, 135–140. [Google Scholar] [CrossRef]
- Arcand, J.; Floras, V.; Ahmed, M.; Al-Hesayen, A.; Ivanov, J.; Allard, J.P.; Newton, G.E. Nutritional Inadequacies in Patients with Stable Heart Failure. J. Am. Diet. Assoc. 2009, 109, 1909–1913. [Google Scholar] [CrossRef]
- Frediani, J.K.; Reilly, C.M.; Higgins, M.; Clark, P.C.; Gary, R.A.; Dunbar, S.B. Quality and adequacy of dietary intake in a southern urban heart failure population. J. Cardiovasc. Nurs. 2013, 28, 119–128. [Google Scholar] [CrossRef]
- Jefferson, K.; Ahmed, M.; Choleva, M.; Mak, S.; Allard, J.P.; Newton, G.E.; Arcand, J. Effect of a Sodium-Restricted Diet on Intake of Other Nutrients in Heart Failure: Implications for Research and Clinical Practice. J. Card. Fail. 2015, 21, 959–962. [Google Scholar] [CrossRef]
- Wleklik, M.; Uchmanowicz, I.; Jankowska-Polańska, B.; Andreae, C.; Regulska-Ilow, B. The role of nutritional status in elderly patients with heart failure. J. Nutr. Health Aging 2018, 22, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Dunn, S.P.; Bleske, B.; Dorsch, M.; Macaulay, T.; Van Tassell, B.; Vardeny, O. Nutrition and Heart Failure: Impact of Drug Therapies and Management Strategies. Nutr. Clin. Pract. 2009, 24, 60–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anker, S.D.; Sharma, R. The syndrome of cardiac cachexia. Int. J. Cardiol. 2002, 85, 51–66. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, F.J.; Cervera-Montes, M.; Blesa-Malpica, A.L. Metabolism and nutrition working group of the Spanish Society of Intensive Care Medicine and Coronary Units guidelines for specialized nutritional and metabolic support in the critically ill patient: Update. Consensus SEMICYUC-SENPE: Cardiac patient. Nutr. Hosp. 2011, 26 (Suppl. 2), 76–80. [Google Scholar]
- Tevik, K.; Thürmer, H.; Husby, M.I.; De Soysa, A.K.; Helvik, A.-S. Nutritional risk screening in hospitalized patients with heart failure. Clin. Nutr. 2015, 34, 257–264. [Google Scholar] [CrossRef]
- Sargento, L.; Longo, S.; Lousada, N.; Dos Reis, R.P. The Importance of Assessing Nutritional Status in Elderly Patients with Heart Failure. Curr. Heart Fail. Rep. 2014, 11, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Anker, S.D.; Horwich, T.B.; Fonarow, G.C. Nutritional and anti-inflammatory interventions in chronic heart failure. Am. J. Cardiol. 2008, 101, 89E–103E. [Google Scholar] [CrossRef]
- Shirakabe, A.; Hata, N.; Kobayashi, N.; Okazaki, H.; Matsushita, M.; Shibata, Y.; Nishigoori, S.; Uchiyama, S.; Asai, K.; Shimizu, W. The prognostic impact of malnutrition in patients with severely decompensated acute heart failure, as assessed using the Prognostic Nutritional Index (PNI) and Controlling Nutritional Status (CONUT) score. Heart Vessels 2018, 33, 134–144. [Google Scholar] [CrossRef]
- Sze, S.; Zhang, J.; Pellicori, P.; Morgan, D.; Hoye, A.; Clark, A.L. Prognostic value of simple frailty and malnutrition screening tools in patients with acute heart failure due to left ventricular systolic dysfunction. Clin. Res. Cardiol. 2017, 106, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Narumi, T.; Arimoto, T.; Funayama, A.; Kadowaki, S.; Otaki, Y.; Nishiyama, S.; Takahashi, H.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. The prognostic importance of objective nutritional indexes in patients with chronic heart failure. J. Cardiol. 2013, 62, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Sung, S.; Cheng, H.; Hsu, P.; Guo, C.; Yu, W.; Chen, C. Prognostic Nutritional Index and the Risk of Mortality in Patients with Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, 004876. [Google Scholar] [CrossRef] [PubMed]
- Ulger, Z.; Halil, M.; Kalan, I.; Yavuz, B.B.; Cankurtaran, M.; Güngör, E.; Arıoğul, S.; Kalan, I.; Ariogul, S. Comprehensive assessment of malnutrition risk and related factors in a large group of community-dwelling older adults. Clin. Nutr. 2010, 29, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, T.M.; Massey, J.T.; Waksberg, J.; Chu, A.; Maurer, K.R. Sample design: Third National Health and Nutrition Examination Survey. Vital Health Stat. Ser. 1992, 2, 1–35. [Google Scholar]
- Centers for Disease Control and Prevention. National Center for Health Statistics. Analytic and Reporting Guidelines: The Third National Health and Nutrition Examination Survey, NHANES III (1988–94). Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes3/nh3gui.pdf (accessed on 9 September 2019).
- Gunter, E.W.; Lewis, B.G.; Koncikowski, S.M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. U.S. Department of Health and Human Services, 1996. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/labman.pdf (accessed on 9 September 2019).
- Gibbs, J.; Cull, W.; Henderson, W.; Daley, J.; Hur, K.; Khuri, S.F. Preoperative serum albumin level as a predictor of operative mortality and morbidity: Results from the National VA Surgical Risk Study. Arch. Surg. 1999, 134, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.H.; Walls, R.C.; Bopp, M.M. Protein-Energy Undernutrition and the Risk of Mortality within One Year of Hospital Discharge: A Follow-Up Study. J. Am. Geriatr. Soc. 1995, 43, 507–512. [Google Scholar] [CrossRef]
- Casey, J.; Flinn, W.R.; Yao, J.S.; Fahey, V.; Pawlowski, J.; Bergan, J.J. Correlation of immune and nutritional status with wound complications in patients undergoing vascular operations. Surgery 1983, 93, 822–827. [Google Scholar]
- Shronts, E.P. Basic Concepts of Immunology and Its Application to Clinical Nutrition. Nutr. Clin. Pract. 1993, 8, 177–183. [Google Scholar] [CrossRef]
- Tayek, J.A.; Blackburn, G.L. Goals of nutritional support in acute infections. Am. J. Med. 1984, 76, 81–90. [Google Scholar] [CrossRef]
- Feskanich, D.; Sielaff, B.H.; Chong, K.; Buzzard, I. Computerized collection and analysis of dietary intake information. Comput. Methods Programs Biomed. 1989, 30, 47–57. [Google Scholar] [CrossRef]
- National Cancer Institute. Epidemiology & Genomics Research Program. Available online: https://epi.grants.cancer.gov (accessed on 9 September 2019).
- U.S. Department of Agriculture. Center for Nutrition Policy and Promotion (CNPP). Available online: https://www.fns.usda.gov/cnpp/center-nutrition-policy-and-promotion (accessed on 9 September 2019).
- National Institute on Alcohol Abuse and Alcoholism. Drinking Levels Defined. Available online: https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking (accessed on 9 September 2019).
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S516. [Google Scholar] [CrossRef]
- Pate, R.R. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995, 273, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Yoshihisa, A.; Kanno, Y.; Watanabe, S.; Yokokawa, T.; Abe, S.; Miyata, M.; Sato, T.; Suzuki, S.; Oikawa, M.; Kobayashi, A.; et al. Impact of nutritional indices on mortality in patients with heart failure. Open Heart 2018, 5, e000730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.M.; Ovesen, L.; Osler, M. The ‘Mini Nutritional Assessment’ (MNA) and the ‘Determine Your Nutritional Health’ Checklist (NSI Checklist) as predictors of morbidity and mortality in an elderly Danish population. Br. J. Nutr. 1999, 81, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.M.; Ovesen, L.; Schroll, M. A six months’ prospective follow-up of 65+-y-old patients from general practice classified according to nutritional risk by the Mini Nutritional Assessment. Eur. J. Clin. Nutr. 2001, 55, 1028–1033. [Google Scholar] [CrossRef]
- Compan, B.; Di Castri, A.; Plaze, J.M.; Arnaud-Battandier, F. Epidemiological study of malnutrition in elderly patients in acute, sub-acute and long-term care using the MNA. J. Nutr. Health Aging 1999, 3, 146–151. [Google Scholar]
- Setoguchi, S.; Stevenson, L.W.; Schneeweiss, S. Repeated hospitalizations predict mortality in the community population with heart failure. Am. Heart J. 2007, 154, 260–266. [Google Scholar] [CrossRef]
- Sole, M.J.; Jeejeebhoy, K.N. Conditioned nutritional requirements and the pathogenesis and treatment of myocardial failure. Curr. Opin. Clin. Nutr. Metab. Care 2000, 3, 417–424. [Google Scholar] [CrossRef]
- Habbu, A.; Lakkis, N.M.; Dokainish, H. The Obesity Paradox: Fact or Fiction? Am. J. Cardiol. 2006, 98, 944–948. [Google Scholar] [CrossRef]
- Gorelik, O.; Almoznino-Sarafian, D.; Feder, I.; Wachsman, O.; Alon, I.; Litvinjuk, V.; Roshovsky, M.; Modai, D.; Cohen, N. Dietary intake of various nutrients in older patients with congestive heart failure. Cardiology 2003, 99, 177–181. [Google Scholar] [CrossRef]
- European Society of Cardiology. Heart Failure Patients with a Higher Protein Intake Live Longer. Available online: https://www.escardio.org/The-ESC/Press-Office/Press-releases/heart-failure-patients-with-a-higher-protein-intake-live-longer (accessed on 9 September 2019).
- Sarwar, S.; Sherman, R.A. How Well Does Serum Albumin Correlate with Dietary Protein Intake in Dialysis Patients? Kidney Int. Rep. 2016, 2, 90–93. [Google Scholar] [CrossRef]
- Kouvari, M.; Tyrovolas, S.; Panagiotakos, D.B. Red meat consumption and healthy ageing: A review. Maturitas 2016, 84, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Grossniklaus, D.A.; O’Brien, M.C.; Clark, P.C.; Dunbar, S.B. Nutrient intake in heart failure patients. J. Cardiovasc. Nurs. 2008, 23, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Witte, K.K.; Clark, A.L.; Cleland, J.G. Chronic heart failure and micronutrients. J. Am. Coll. Cardiol. 2001, 37, 1765–1774. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, S.S.; Baruch, L.; Kukin, M.L.; Bernstein, J.L.; Fisher, M.L.; Packer, M. Prognostic importance of the serum magnesium concentration in patients with congestive heart failure. J. Am. Coll. Cardiol. 1990, 16, 827–831. [Google Scholar] [CrossRef] [Green Version]
- Paddon-Jones, D.; Short, K.R.; Campbell, W.W.; Volpi, E.; Wolfe, R.R. Role of dietary protein in the sarcopenia of aging. Am. J. Clin. Nutr. 2008, 87, 1562S–1566S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef]
- Lennie, T.A.; Andreae, C.; Rayens, M.K.; Song, E.K.; Dunbar, S.B.; Pressler, S.J.; Heo, S.; Kim, J.; Moser, D.K. Micronutrient Deficiency Independently Predicts Time to Event in Patients with Heart Failure. J. Am. Heart Assoc. 2018, 7, 007251. [Google Scholar] [CrossRef]
- Zucker, I.H. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension 2006, 48, 1005–1011. [Google Scholar] [CrossRef]
- Opie, L.H. The metabolic vicious cycle in heart failure. Lancet 2004, 364, 1733–1734. [Google Scholar] [CrossRef]
- Barbaresko, J.; Koch, M.; Schulze, M.B.; Nöthlings, U. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Biddle, M.; Moser, D.; Song, E.K.; Heo, S.; Payne-Emerson, H.; Dunbar, S.B.; Pressler, S.; Lennie, T. Higher dietary lycopene intake is associated with longer cardiac event-free survival in patients with heart failure. Eur. J. Cardiovasc. Nurs. 2013, 12, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Suskin, N.; Sheth, T.; Negassa, A.; Yusuf, S. Relationship of current and past smoking to mortality and morbidity in patients with left ventricular dysfunction. J. Am. Coll. Cardiol. 2001, 37, 1677–1682. [Google Scholar] [CrossRef]
- Higuchi, T.; Omata, F.; Tsuchihashi, K.; Higashioka, K.; Koyamada, R.; Okada, S. Current cigarette smoking is a reversible cause of elevated white blood cell count: Cross-sectional and longitudinal studies. Prev. Med. Rep. 2016, 4, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Dallongeville, J.; Marécaux, N.; Fruchart, J.-C.; Amouyel, P. Cigarette smoking is associated with unhealthy patterns of nutrient intake: A meta-analysis. J. Nutr. 1998, 128, 1450–1457. [Google Scholar] [CrossRef]
PNI 1 Quintile | PNI Score | |
---|---|---|
Mean ± SD | Range | |
Total (n = 445) | 51.5 ± 5.9 | 32.2–73.0 |
Quintile 1 (n = 89) | 43.8 ± 3.3 | 32.2–47.1 |
Quintile 2 (n = 89) | 48.7 ± 0.8 | 47.2–49.9 |
Quintile 3 (n = 89) | 51.1 ± 0.7 | 49.9–52.5 |
Quintile 4 (n = 89) | 54.1 ± 1.0 | 52.5–56.1 |
Quintile 5 (n = 89) | 60.0 ± 3.5 | 56.1–73.0 |
Characteristics | Total (n = 445) | Prognostic Nutritional Index | p-Value | ||||
---|---|---|---|---|---|---|---|
≤47.1 (n = 89) | 47.1 to 49.9 (n = 89) | 49.9 to 52.5 (n = 89) | 52.5 to 56.1 (n = 89) | ≥56.1 (n = 89) | |||
Age, years | 70.6 ± 9.6 | 70.9 ± 9.2 | 71.6 ± 9.4 | 70.7 ± 10.3 | 71.1 ± 8.8 | 68.6 ± 10.2 | 0.123 a |
Male, % | 54.4 | 49.4 | 48.3 | 53.9 | 56.2 | 64.0 | 0.049 |
Race/Ethnicity, % | |||||||
Non-Hispanic White | 47.6 | 41.6 | 47.2 | 43.8 | 56.2 | 49.4 | 0.137 |
Non-Hispanic Black | 22.9 | 28.1 | 25.8 | 27 | 18 | 15.7 | |
Mexican-American | 29.4 | 30.3 | 27.0 | 29.2 | 25.8 | 34.8 | |
Education, % | |||||||
Less than High School | 65.2 | 76.1 | 61.4 | 60.9 | 63.6 | 63.6 | 0.139 |
High School Graduate | 19.4 | 11.4 | 20.5 | 25.3 | 18.2 | 21.6 | |
More than High School | 15.5 | 12.5 | 18.2 | 13.8 | 18.2 | 14.8 | |
Currently working, % | 15.7 | 14.6 | 16.9 | 19.1 | 10.1 | 18.0 | 0.543 |
Currently married, % | 59.8 | 57.3 | 59.1 | 60.2 | 60.7 | 61.8 | 0.541 |
Poverty Income Ratio, % | |||||||
≤1.300 | 43.8 | 43.0 | 40.5 | 47.3 | 43.2 | 45.5 | 0.159 |
1.301–3.500 | 42.3 | 46.8 | 46.4 | 39.2 | 43.2 | 35.1 | |
≥3.501 | 13.9 | 10.1 | 13.1 | 13.5 | 13.5 | 19.5 | |
Body Mass Index, kg/m2 | 27.8 ± 5.7 | 27.8 ± 6.8 | 27.6 ± 6.2 | 27.6 ± 5.5 | 28.2 ± 5.5 | 27.9 ± 4.1 | 0.186 a |
Systolic Blood Pressure, mm Hg | 142 ± 22 | 140 ± 21 | 139.9 ± 6 | 142.7 ± 22 | 143.6 ± 21 | 142 ± 20 | 0.583 b |
Diastolic Blood Pressure, mm Hg | 73 ± 12 | 74 ± 11 | 72.2 ± 12 | 74.3 ± 13 | 72.5 ± 11 | 74 ± 12 | 0.878 b |
Clinical Biomarkers | |||||||
Total Cholesterol, mg/dL | 224.0 ± 52.7 | 216.7 ± 56.3 | 223.1 ± 55.0 | 230.0 ± 274.5 | 224.7 ± 41.7 | 225.7 ± 37.6 | 0.042 a |
Triglycerides, mg/dL | 189.2 ± 179.2 | 175.8 ± 229.3 | 175.9 ± 117.2 | 203.3 ± 274.5 | 182.6 ± 84.3 | 208.5 ± 113.0 | <0.001 a |
HDL-Cholesterol, mg/dL | 48.3 ± 15.8 | 52.0 ± 17.0 | 49.5 ± 15.9 | 51.0 ± 16.9 | 45.3 ± 14.8 | 43.5 ± 12.8 | <0.001 a |
C-reactive Protein, mg/L | 7.9 ± 14.0 | 15.6 ± 26.2 | 7.0 ± 9.5 | 5.8 ± 6.1 | 5.3 ± 6.5 | 6.0 ± 7.7 | <0.001 a |
Albumin, g/dL | 4.0 ± 0.4 | 3.6 ± 0.4 | 3.9 ± 0.2 | 4.0 ± 0.2 | 4.2 ± 0.3 | 4.4 ± 0.4 | <0.001 a |
Lymphocyte Count /mm3 | 2244 ± 807 | 1638 ± 535 | 1898 ± 499 | 2127 ± 494 | 2398 ± 530 | 3160 ± 919 | <0.001 a |
Smoking, % | |||||||
Never | 38.2 | 43.8 | 40.5 | 40.5 | 38.2 | 28.1 | 0.041 |
Former | 46.1 | 43.8 | 47.2 | 44.9 | 44.9 | 48.3 | |
Current | 15.7 | 12.4 | 12.4 | 14.6 | 15.7 | 23.6 | |
Binge Drinking, % | 5.2 | 12.8 | 1.2 | 3.5 | 3.5 | 4.7 | 0.102 |
Physical Activity, % | |||||||
Inactive | 44.7 | 44.9 | 49.4 | 49.4 | 50.6 | 29.2 | 0.094 |
Insufficiently Active | 31.0 | 33.7 | 25.8 | 28.1 | 24.7 | 42.7 | |
Active | 24.3 | 21.4 | 24.7 | 24.7 | 24.7 | 28.1 | |
Number of Comorbidities, % | |||||||
0–2 | 30.2 | 22.4 | 29.2 | 29.2 | 28.7 | 41.0 | 0.027 |
3–4 | 39.0 | 49.4 | 37.1 | 43.7 | 31.0 | 33.7 | |
5+ | 30.9 | 28.2 | 33.7 | 26.4 | 40.2 | 25.3 | |
Years since 1st HF Diagnosis, % | |||||||
0–2 years | 24.8 | 25.3 | 20.9 | 32.9 | 21.6 | 23.5 | 0.012 |
3–5 years | 19.5 | 27.6 | 18.6 | 17.7 | 20.5 | 12.9 | |
6–10 years | 24.8 | 16.1 | 30.2 | 21.2 | 21.6 | 35.3 | |
11+ years | 30.9 | 31.0 | 30.2 | 28.2 | 36.4 | 28.2 | |
Number of Hospitalizations in the Past 12 Months, % | |||||||
Never | 62.9 | 53.5 | 61.8 | 62.5 | 63.2 | 73.0 | 0.021 |
1 | 19.4 | 22.1 | 22.5 | 18.2 | 24.1 | 10.1 | |
2+ | 17.8 | 24.4 | 15.7 | 19.3 | 12.6 | 16.9 | |
Medication Use | |||||||
Diuretics, % | 46.4 | 49.4 | 43.9 | 54.6 | 38.6 | 46.1 | 0.680 |
ACEI, % | 24.4 | 19.0 | 26.8 | 29.9 | 27.7 | 18.4 | 0.928 |
Beta-Blockers, % | 14.9 | 13.9 | 11.0 | 16.9 | 16.9 | 15.8 | 0.744 |
Digitoxin, % | 28.2 | 25.3 | 29.3 | 29.3 | 30.1 | 26.3 | 0.887 |
Isosorbide, % | 12.9 | 16.5 | 11.0 | 15.6 | 9.6 | 11.8 | 0.411 |
Nutritional Intake | Total (n = 445) | Prognostic Nutritional Index | p-Value | ||||
---|---|---|---|---|---|---|---|
≤47.1 (n = 89) | 47.1 to 49.9 (n = 89) | 49.9 to 52.5 (n = 89) | 52.5 to 56.1 (n = 89) | ≥56.1 (n = 89) | |||
Total Calories, kcal | 1537 ± 693 | 1356 ± 541 | 1465 ± 626 | 1620 ± 715 | 1613 ± 751 | 1629 ± 776 | 0.037 |
Macronutrients | |||||||
Protein, g | 63.7 ± 32.2 | 58.6 ± 33.9 | 57.4 ± 24.0 | 67.4 ± 29.5 | 65.2 ± 28.8 | 70.1 ± 41.0 | 0.039 |
Total Energy from Protein, % kcal from Protein | 17.0 ± 4.9 | 17.4 ± 5.6 | 16.3 ± 4.7 | 17.2 ± 5.1 | 16.8 ± 4.7 | 17.3 ± 4.3 | 0.762 |
Total Fat, g | 56.3 ± 32.5 | 48.4 ± 28.0 | 53.9 ± 27.5 | 57.4 ± 33.7 | 59.9 ± 32.2 | 62.0 ± 38.8 | 0.050 |
Total Energy from Total Fat, % kcal from Total Fat | 32.2 ± 9.3 | 31.2 ± 10.1 | 32.7 ± 8.0 | 31.3 ± 10.2 | 33.2 ± 7.9 | 32.7 ± 10.0 | 0.270 |
Saturated Fatty Acids, g | 18.7 ± 11.1 | 16.1 ± 9.5 | 17.4 ± 9.7 | 19.2 ± 11.8 | 19.7 ± 10.5 | 20.9 ± 13.2 | 0.025 |
Monounsaturated Fatty Acids, g | 21.4 ± 13.5 | 18.6 ± 12.5 | 20.0 ± 10.6 | 21.9 ± 14.1 | 23.0 ± 13.8 | 23.7 ± 15.7 | 0.059 |
Polyunsaturated Fatty Acids, g | 11.6 ± 8.3 | 9.7 ± 6.3 | 12.2 ± 7.8 | 11.5 ± 8.1 | 12.4 ± 8.6 | 12.2 ± 10.3 | 0.218 |
Carbohydrates, g | 196.8 ± 95.5 | 176.8 ± 69.9 | 188.0 ± 87.2 | 214.7 ± 112.7 | 204.5 ± 108.1 | 200.1 ± 91.1 | 0.182 |
Total Energy from Carbohydrates, % kcal from Carbohydrates | 51.7 ± 11.6 | 52.8 ± 12.4 | 51.4 ± 11.1 | 53.1 ± 12.1 | 50.7 ± 10.5 | 50.8 ± 11.7 | 0.153 |
Cholesterol, mg | 256.6 ± 194.2 | 229.6 ± 174.4 | 222.6 ± 160.4 | 263.2 ± 182.6 | 273.1 ± 193.6 | 294.5 ± 244.2 | 0.061 |
Dietary Fiber, g | 15.1 ± 10.8 | 12.7 ± 8.0 | 14.5 ± 10.0 | 16.2 ± 11.5 | 15.5 ± 10.8 | 16.5 ± 12.9 | 0.072 |
Micronutrients | |||||||
Vitamin A, IU | 6966 ± 9911 | 6561 ± 9677 | 7656 ± 9717 | 6712 ± 10452 | 6347 ± 9086 | 7552 ± 10690 | 0.515 |
Thiamin, mg | 1.43 ± 0.87 | 1.29 ± 0.77 | 1.39 ± 0.80 | 1.47 ± 0.91 | 1.41 ± 0.75 | 1.59 ± 1.06 | 0.133 |
Riboflavin, mg | 1.71 ± 0.98 | 1.56 ± 0.95 | 1.70 ± 0.97 | 1.72 ± 0.97 | 1.72 ± 0.92 | 1.84 ± 1.06 | 0.067 |
Niacin, mg | 18.2 ± 11.3 | 17.2 ± 14.0 | 17.0 ± 9.4 | 19.3 ± 10.2 | 17.6 ± 9.3 | 20.0 ± 12.7 | 0.080 |
Vitamin B12, µg | 4.2 ± 5.1 | 4.1 ± 7.4 | 4.3 ± 6.1 | 4.0 ± 3.6 | 4.2 ± 3.5 | 4.3 ± 4.0 | 0.124 |
Folate, µg | 264.7 ± 212.0 | 227.9 ± 204.1 | 263.3 ± 185.8 | 280.9 ± 228.8 | 265.6 ± 206.3 | 285.8 ± 231.5 | 0.065 |
Vitamin C, mg | 100.8 ± 99.6 | 91.6 ± 81.5 | 111.3 ± 124.5 | 106.5 ± 104.2 | 91.7 ± 77.3 | 103.1 ± 103.8 | 0.588 |
Vitamin D, µg | 4.3 ± 3.8 | 4.0 ± 3.0 | 4.5 ± 3.9 | 4.5 ± 4.3 | 4.4 ± 3.7 | 4.4 ± 4.0 | 0.963 |
Vitamin E, mg α-tocopherol equiv. | 7.6 ± 10.0 | 7.0 ± 12.0 | 7.5 ± 10.6 | 7.6 ± 9.1 | 8.2 ± 8.7 | 7.9 ± 9.4 | 0.139 |
Calcium, mg | 653.4 ± 436.6 | 607.2 ± 350.6 | 647.4 ± 443.1 | 685.0 ± 507.0 | 661.7 ± 435.7 | 665.9 ± 438.4 | 0.736 |
Magnesium, mg | 245.5 ± 131.8 | 218.4 ± 117.3 | 231.9 ± 118.0 | 262.2 ± 134.3 | 246.9 ± 124.2 | 268.1 ± 157.5 | 0.034 |
Iron, mg | 13.4 ± 10.1 | 11.4 ± 8.4 | 13.6 ± 11.9 | 13.9 ± 9.7 | 13.8 ± 9.1 | 14.1 ± 11.1 | 0.095 |
Zinc, mg | 9.8 ± 7.0 | 8.5 ± 6.7 | 9.1 ± 6.2 | 10.6 ± 7.3 | 10.2 ± 5.7 | 10.9 ± 8.6 | 0.008 |
Copper, mg | 1.0 ± 0.6 | 0.9 ± 0.6 | 1.0 ± 0.5 | 1.1 ± 0.5 | 1.1 ± 0.5 | 1.1 ± 0.7 | 0.022 |
Potassium, mg | 2418.9 ± 1208.8 | 2130.4 ± 1029.9 | 2338.9 ± 1131.6 | 2575.9 ± 1266.6 | 2364.2 ± 1077.1 | 2685.2 ± 1440.9 | 0.010 |
Phosphorus, mg | 1025.2 ± 517.7 | 957.4 ± 505.0 | 945.7 ± 473.9 | 1059.4 ± 511.4 | 1051.0 ± 490.5 | 1112.2 ± 591.6 | 0.076 |
Sodium, mg | 2485 ± 1457 | 2221 ± 1854 | 2361 ± 1294 | 2595 ± 1305 | 2634 ± 1363 | 2611 ± 1380 | 0.021 |
Food Groups (No. of Servings) | |||||||
Fruit | 1.7 ± 2.3 | 1.7 ± 2.1 | 2.0 ± 3.1 | 1.7 ± 2.2 | 1.6 ± 1.6 | 1.6 ± 2.1 | 0.513 |
Vegetables | 2.8 ± 2.4 | 2.2 ± 1.6 | 2.7 ± 2.5 | 3.1 ± 2.6 | 2.7 ± 2.1 | 3.2 ± 2.8 | 0.037 |
Deep Yellow Vegetables | 0.2 ± 0.5 | 0.2 ± 0.4 | 0.2 ± 0.3 | 0.2 ± 0.5 | 0.2 ± 0.5 | 0.2 ± 0.6 | 0.614 |
Dark Green Leafy Vegetables | 0.2 ± 0.8 | 0.2 ± 0.7 | 0.3 ± 1.2 | 0.3 ± 0.8 | 0.2 ± 0.6 | 0.1 ± 0.4 | 0.772 |
Bean and Peas | 0.3 ± 0.9 | 0.1 ± 0.5 | 0.2 ± 0.5 | 0.4 ± 1.1 | 0.4 ± 1.0 | 0.4 ± 1.0 | 0.087 |
Tomatoes | 0.4 ± 0.7 | 0.2 ± 0.4 | 0.4 ± 1.0 | 0.5 ± 0.7 | 0.4 ± 0.7 | 0.5 ± 0.6 | 0.001 |
Other Vegetables | 0.9 ± 1.1 | 0.8 ± 0.9 | 0.9 ± 1.4 | 0.9 ± 1.2 | 0.8 ± 0.9 | 1.0 ± 1.1 | 0.067 |
Grains | 5.3 ± 3.0 | 5.0 ± 2.5 | 5.1 ± 2.8 | 5.4 ± 2.9 | 5.4 ± 3.2 | 5.4 ± 3.5 | 0.970 |
Whole Grains | 1.0 ± 1.6 | 1.1 ± 1.6 | 1.0 ± 1.3 | 1.2 ± 1.9 | 1.1 ± 1.7 | 0.8 ± 1.4 | 0.281 |
Meat and Other Proteins, oz | 4.2 ± 3.1 | 3.8 ± 3.1 | 3.7 ± 2.4 | 4.5 ± 3.1 | 4.3 ± 2.8 | 4.8 ± 3.9 | 0.071 |
Red Meat, oz | 1.6 ± 2.3 | 1.2 ± 1.5 | 1.3 ± 1.7 | 1.6 ± 2.4 | 1.5 ± 2.1 | 2.4 ± 3.4 | 0.028 |
Poultry, oz | 1.0 ± 2.0 | 1.3 ± 2.5 | 0.8 ± 1.6 | 1.3 ± 2.1 | 1.1 ± 2.0 | 0.8 ± 1.7 | 0.080 |
Fish and Other Seafood, oz | 0.4 ± 1.3 | 0.4 ± 1.1 | 0.5 ± 1.6 | 0.6 ± 1.3 | 0.4 ± 1.3 | 0.2 ± 0.8 | 0.258 |
Eggs, oz lean meat equivalents | 0.6 ± 0.8 | 0.5 ± 0.7 | 0.5 ± 0.7 | 0.6 ± 0.8 | 0.6 ± 0.9 | 0.6 ± 0.9 | 0.938 |
Luncheon Meats, oz | 0.5 ± 1.0 | 0.3 ± 0.7 | 0.5 ± 0.9 | 0.4 ± 0.9 | 0.6 ± 1.1 | 0.6 ± 1.2 | 0.063 |
Nuts and Seeds, oz lean meat equivalents | 0.1 ± 0.4 | 0.1 ± 0.3 | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.1 ± 0.3 | 0.1 ± 0.6 | 0.635 |
Soy Product, oz lean meat equivalents | 0.0 ± 0.2 | 0.0 ± 0.0 | 0.1 ± 0.5 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.557 |
Dairy | 1.1 ± 1.2 | 1.2 ± 1.1 | 1.2 ± 1.3 | 1.1 ± 1.2 | 1.1 ± 1.1 | 1.1 ± 1.3 | 0.368 |
Parameters | Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|---|
Model 1a (R2 = 0.140) | Model 2 b (R2 = 0.141) | ||||||||
β | CI | p-Value | β | CI | p-Value | β | CI | p-Value | |
Red Meat | 0.404 | (0.174, 0.635) | 0.001 | 0.253 | (0.012, 0.492) | 0.040 | |||
Vegetables | 0.335 | (0.107, 0.564) | 0.004 | 0.255 | (0.014, 0.496) | 0.038 | |||
Race/Ethnicity | |||||||||
Non-Hispanic White | Ref. | Ref. | Ref. | ||||||
Non-Hispanic Black | −1.833 | (−3.210, −0.455) | 0.009 | −1.278 | (−2.738, 0.182) | 0.086 | −1.013 | (−2.505, 0.479) | 0.183 |
Mexican-American | 0.065 | (−1.206, 1.335) | 0.920 | −0.040 | (−1.368, 1.289) | 0.953 | 0.200 | (−1.157, 1.557) | 0.773 |
Clinical Biomarkers | |||||||||
Triglycerides | 0.006 | (0.001, 0.010) | 0.011 | 0.002 | (−0.003, 0.006) | 0.499 | 0.002 | (−0.003, 0.006) | 0.430 |
HDL-Cholesterol | −0.057 | (−0.091, −0.022) | 0.001 | −0.050 | (−0.085, −0.010) | 0.013 | −0.047 | (−0.084, −0.009) | 0.015 |
Serum C-reactive Protein | −0.143 | (−0.192, −0.094) | <0.001 | −0.091 | (−0.129, −0.053) | <0.001 | −0.097 | (−0.134, −0.059) | <0.001 |
Smoking | |||||||||
Never | Ref. | Ref. | Ref. | ||||||
Former | 0.944 | (−0.245, 2.134) | 0.120 | 0.546 | (−0.662, 1.753) | 0.375 | 0.519 | (−0.689, 1.727) | 0.399 |
Current | 1.770 | (0.141, 3.398) | 0.033 | 1.602 | (−0.087, 3.291) | 0.063 | 2.041 | (0.375, 3.708) | 0.017 |
Binge Drinking | −2.750 | (−5.271, −0.230) | 0.033 | −1.768 | (−4.360, 0.823) | 0.181 | −1.791 | (−4.383, 0.801) | 0.175 |
Number of Comorbidities | |||||||||
0–2 | Ref. | Ref. | Ref. | ||||||
3–4 | −1.517 | (−2.831, −0.203) | 0.024 | −1.445 | (−2.781, −0.108) | 0.034 | −1.338 | (−2.681, 0.005) | 0.051 |
5+ | −1.143 | (−2.530, 0.244) | 0.106 | −0.894 | (−2.369, 0.581) | 0.234 | −0.676 | (−2.173, 0.820) | 0.375 |
Number of Hospitalizations in the Past 12 Months | |||||||||
Never | Ref. | Ref. | Ref. | ||||||
1 | −1.579 | (−0.162, −3.00) | 0.029 | −0.715 | (−2.143, 0.712) | 0.325 | −0.715 | (−2.143, 0.712) | 0.325 |
2+ | −1.940 | (−0.475, −3.40) | 0.010 | −1.089 | (−2.532, 0.355) | 0.139 | −1.049 | (−2.493, 0.396) | 0.154 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattler, E.L.P.; Ishikawa, Y.; Trivedi-Kapoor, R.; Zhang, D.; Quyyumi, A.A.; Dunbar, S.B. Association between the Prognostic Nutritional Index and Dietary Intake in Community-Dwelling Older Adults with Heart Failure: Findings from NHANES III. Nutrients 2019, 11, 2608. https://doi.org/10.3390/nu11112608
Sattler ELP, Ishikawa Y, Trivedi-Kapoor R, Zhang D, Quyyumi AA, Dunbar SB. Association between the Prognostic Nutritional Index and Dietary Intake in Community-Dwelling Older Adults with Heart Failure: Findings from NHANES III. Nutrients. 2019; 11(11):2608. https://doi.org/10.3390/nu11112608
Chicago/Turabian StyleSattler, Elisabeth L. P., Yuta Ishikawa, Rupal Trivedi-Kapoor, Donglan Zhang, Arshed A. Quyyumi, and Sandra B. Dunbar. 2019. "Association between the Prognostic Nutritional Index and Dietary Intake in Community-Dwelling Older Adults with Heart Failure: Findings from NHANES III" Nutrients 11, no. 11: 2608. https://doi.org/10.3390/nu11112608
APA StyleSattler, E. L. P., Ishikawa, Y., Trivedi-Kapoor, R., Zhang, D., Quyyumi, A. A., & Dunbar, S. B. (2019). Association between the Prognostic Nutritional Index and Dietary Intake in Community-Dwelling Older Adults with Heart Failure: Findings from NHANES III. Nutrients, 11(11), 2608. https://doi.org/10.3390/nu11112608