1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Measurements
2.2.1. Predictors: Dietary Intake of Fiber and Whole Grains
2.2.2. Covariates
2.2.3. Outcomes: Recurrence and Mortality
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. All-Cause and Cancer-Specific Mortality
3.3. Recurrence
3.4. Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Argiris, A.; Karamouzis, M.V.; Raben, D.; Ferris, R.L. Head and neck cancer. Lancet Lond. Engl. 2008, 371, 1695–1709. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- ACS. Cancer Facts & Figures 2019; American Cancer Society: Atlanta, GA, USA, 2019. [Google Scholar]
- Maino Vieytes, C.A.; Taha, H.M.; Burton-Obanla, A.A.; Douglas, K.G.; Arthur, A.E. Carbohydrate Nutrition and the Risk of Cancer. Curr. Nutr. Rep. 2019, 8, 230–239. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, S.J.D. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Alalem, M.; Ray, B.K. Insulin signaling network in cancer. Indian J. Biochem. Biophys. 2014, 51, 493–498. [Google Scholar]
- Probst-Hensch, N.M.; Wang, H.; Goh, V.H.H.; Seow, A.; Lee, H.-P.; Yu, M.C. Determinants of circulating insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations in a cohort of Singapore men and women. Cancer Epidemiol. Biomark. Prev. 2003, 12, 739–746. [Google Scholar]
- Ma, Y.; Hébert, J.R.; Li, W.; Bertone-Johnson, E.R.; Olendzki, B.; Pagoto, S.L.; Tinker, L.; Rosal, M.C.; Ockene, I.S.; Ockene, J.K.; et al. Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition 2008, 24, 941–949. [Google Scholar] [CrossRef]
- Jacobs, L.R. Relationship between Dietary Fiber and Cancer: Metabolic, Physiologic, and Cellular Mechanisms. Exp. Biol. Med. 1986, 183, 299–310. [Google Scholar] [CrossRef]
- Kawakita, D.; Lee, Y.-C.A.; Turati, F.; Parpinel, M.; Decarli, A.; Serraino, D.; Matsuo, K.; Olshan, A.F.; Zevallos, J.P.; Winn, D.M.; et al. Dietary fiber intake and head and neck cancer risk: A pooled analysis in the International Head and Neck Cancer Epidemiology consortium. Int. J. Cancer 2017, 141, 1811–1821. [Google Scholar] [CrossRef]
- Kawakita, D.; Lee, Y.-C.A.; Gren, L.H.; Buys, S.S.; La Vecchia, C.; Hashibe, M. Fiber intake and the risk of head and neck cancer in the prostate, lung, colorectal and ovarian (PLCO) cohort. Int. J. Cancer 2019, 145, 2342–2348. [Google Scholar] [CrossRef]
- De Vito, R.; Lee, Y.C.A.; Parpinel, M.; Serraino, D.; Olshan, A.F.; Zevallos, J.P.; Levi, F.; Zhang, Z.F.; Morgenstern, H.; Garavello, W.; et al. Shared and Study-specific Dietary Patterns and Head and Neck Cancer Risk in an International Consortium. Epidemiol. (Camb. MA) 2019, 30, 93–102. [Google Scholar] [CrossRef]
- Lam, T.K.; Cross, A.J.; Freedman, N.; Park, Y.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C. Dietary fiber and grain consumption in relation to head and neck cancer in the NIH-AARP Diet and Health Study. Cancer Causes Control CCC 2011, 22, 1405–1414. [Google Scholar] [CrossRef]
- Arthur, A.E.; Goss, A.M.; Demark-Wahnefried, W.; Mondul, A.M.; Fontaine, K.R.; Chen, Y.T.; Carroll, W.R.; Spencer, S.A.; Rogers, L.Q.; Rozek, L.S.; et al. Higher carbohydrate intake is associated with increased risk of all-cause and disease-specific mortality in head and neck cancer patients: Results from a prospective cohort study. Int. J. Cancer 2018, 143, 1105–1113. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Browne, M.L.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. The use of a self-administered questionnaire to assess diet four years in the past. Am. J. Epidemiol. 1988, 127, 188–199. [Google Scholar] [CrossRef]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemiol. 1992, 135, 1114–1126, discussion 1127–1136. [Google Scholar] [CrossRef]
- McNutt, S.; Zimmerman, T.P.; Hull, S.G. Development of food composition databases for food frequency questionnaires (FFQ). J. Food Compos. Anal. 2008, 21, S20–S26. [Google Scholar] [CrossRef]
- DeVries, J.W.; Rader, J.I. Historical perspective as a guide for identifying and developing applicable methods for dietary fiber. J. AOAC Int. 2005, 88, 1349–1366. [Google Scholar]
- Wu, H.; Flint, A.J.; Qi, Q.; van Dam, R.M.; Sampson, L.A.; Rimm, E.B.; Holmes, M.D.; Willett, W.C.; Hu, F.B.; Sun, Q. Association between dietary whole grain intake and risk of mortality: Two large prospective studies in US men and women. JAMA Intern. Med. 2015, 175, 373–384. [Google Scholar] [CrossRef]
- Murphy, N.; Norat, T.; Ferrari, P.; Jenab, M.; Bueno-de-Mesquita, B.; Skeie, G.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tjønneland, A.; et al. Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS ONE 2012, 7, e39361. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Rosner, B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 1983, 25, 165–172. [Google Scholar] [CrossRef]
- Crowder, S.L.; Douglas, K.G.; Yanina Pepino, M.; Sarma, K.P.; Arthur, A.E. Nutrition impact symptoms and associated outcomes in post-chemoradiotherapy head and neck cancer survivors: A systematic review. J. Cancer Surviv. Res. Pract. 2018, 12, 479–494. [Google Scholar] [CrossRef]
- Olmos, A.; Priyalatha, G. A practical guide for using propensity score weighting in R. Pract. Assess. Res. Eval. 2015, 20. [Google Scholar]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef]
- DuGoff, E.H.; Schuler, M.; Stuart, E.A. Generalizing Observational Study Results: Applying Propensity Score Methods to Complex Surveys. Health Serv. Res. 2014, 49, 284–303. [Google Scholar] [CrossRef]
- Li, R.; Hertzmark, E.; Louie, M.; Chen, L.; Spiegelman, D. The SAS LGTPHCURV9 Macro; Channing Laboratory: Boston, MA, USA, 2011. [Google Scholar]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef]
- McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 930–945. [Google Scholar] [CrossRef]
- McNabney, S.M.; Henagan, T.M. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients 2017, 9, 1348. [Google Scholar] [CrossRef]
- Limesand, K.H.; Chibly, A.M.; Fribley, A. Impact of targeting insulin-like growth factor signaling in head and neck cancers. Growth Horm. IGF Res. 2013, 23, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, X. Serum Levels of Insulin Growth Factor (IGF-I) and IGF-Binding Protein Predict Risk of Second Primary Tumors in Patients with Head and Neck Cancer. Clin. Cancer Res. 2004, 10, 3988–3995. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Liese, A.D.; Schulz, M.; Fang, F.; Wolever, T.M.S.; D’Agostino, R.B.; Sparks, K.C.; Mayer-Davis, E.J. Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the Insulin Resistance Atherosclerosis Study. Diabetes Care 2005, 28, 2832–2838. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Faerch, K.; Glümer, C.; Tetens, I.; Pedersen, O.; Carstensen, B.; Jørgensen, T.; Borch-Johnsen, K. Inter99 study Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance: The Inter99 study. Diabetes Care 2005, 28, 1397–1403. [Google Scholar] [CrossRef]
- Thompson, S.V.; Hannon, B.A.; An, R.; Holscher, H.D. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 106, 1514–1528. [Google Scholar] [CrossRef]
- Rischin, D.; Young, R.J.; Fisher, R.; Fox, S.B.; Le, Q.-T.; Peters, L.J.; Solomon, B.; Choi, J.; O’Sullivan, B.; Kenny, L.M.; et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J. Clin. Oncol. 2010, 28, 4142–4148. [Google Scholar] [CrossRef]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef]
- Posner, M.R.; Lorch, J.H.; Goloubeva, O.; Tan, M.; Schumaker, L.M.; Sarlis, N.J.; Haddad, R.I.; Cullen, K.J. Survival and human papillomavirus in oropharynx cancer in TAX 324: A subset analysis from an international phase III trial. Ann. Oncol. 2011, 22, 1071–1077. [Google Scholar] [CrossRef]
- Crowder, S.L.; Sarma, K.P.; Mondul, A.M.; Chen, Y.T.; Li, Z.; Pepino, M.Y.; Zarins, K.R.; Wolf, G.; Rozek, L.S.; Arthur, A.E. Pre-treatment dietary patterns are associated with the presence of nutrition impact symptoms 1-year after diagnosis in patients with head and neck cancer. Cancer Epidemiol. Biomak. Prev. 2019. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Deepak, S.; Block, D.; Block, G. Food intake characteristics of hemodialysis patients as obtained by food frequency questionnaire. J. Ren. Nutr. 2002, 12, 17–31. [Google Scholar] [CrossRef]
- Grooms, K.N.; Ommerborn, M.J.; Pham, D.Q.; Djoussé, L.; Clark, C.R. Dietary Fiber Intake and Cardiometabolic Risks among US Adults, NHANES 1999-2010. Am. J. Med. 2013, 126, 1059–1067.e4. [Google Scholar] [CrossRef]
- McGill, C.; Iii, V.; Devareddy, L. Ten-Year Trends in Fiber and Whole Grain Intakes and Food Sources for the United States Population: National Health and Nutrition Examination Survey 2001–2010. Nutrients 2015, 7, 1119–1130. [Google Scholar] [CrossRef]

Characteristic | Survivors # (%) |
---|---|
Age (year) | |
Mean ± SD | 61.1 ± 11.3 |
Min/Max | 25/95 |
Sex b | |
Male | 344 (74.6) |
Female | 117 (25.4) |
Education c | |
High school or less | 160 (34.8) |
Some college or more | 300 (65.2) |
Race d | |
Non-Hispanic white | 434 (94.8) |
Other | 24 (5.2) |
Body Mass Index (BMI) (kg/m2) | |
Underweight (<18.5) | 20 (4.1) |
Normal weight (18.5–24.9) | 140 (30.2) |
Overweight (25–29.9) | 177 (38.2) |
Obese (30+) | 126 (27.2) |
Site a | |
Oral cavity | 173 (37.5) |
Oropharynx | 184 (39.8) |
Hypopharynx | 11 (2.4) |
Larynx | 94 (20.4) |
Stage | |
0, I, II | 145 (31.3) |
III, IV | 318 (68.7) |
HPV status a | |
HPV-negative | 150 (32.5) |
HPV-positive | 73 (15.8) |
Unknown | 239 (51.7) |
Treatment a | |
Surgery only | 116 (25.1) |
Radiation only | 34 (7.4) |
Surgery + adjuvant radiation or chemo | 83 (18.0) |
Chemotherapy + radiation | 186 (40.3) |
Chemotherapy only | 14 (3.0) |
Palliative or unknown | 29 (6.3) |
Smoking Status a | |
Current | 168 (36.3) |
Former | 162 (35.1) |
Never | 132 (28.6) |
Drinking status a | |
Current | 319 (69.1) |
Former | 108 (23.4) |
Never | 35 (7.6) |
Fiber Intake Quintile (g/day) | Q1 12.94 | Q2 12.94–15.87 | Q3 15.90–19.00 | Q4 19.05–22.91 | Q5 >22.91 |
Mean fiber intake (g) | 10.5 | 14.6 | 17.4 | 20.8 | 27.6 |
Age | 57.65 | 60.72 | 60.58 | 62.62 | 63.76 |
Females (%) | 16 (17.4) | 18 (19.4) | 26 (28.0 | 27 (29.0) | 30 (32.3) |
Some college or more (%) | 51 (56.0) | 55 (59.1) | 55 (60.4) | 66 (71.0) | 73 (79.3) |
Stages III, IV (%) | 65 (70.9) | 66 (71.0) | 66 (71.0) | 63 (67.7) | 58 (63.0) |
Current smoker (%) | 49 (53.3) | 41 (44.1) | 38 (40.9) | 26 (28.3) | 14 (15.2) |
Current drinker (%) | 72 (78.3) | 61 (65.6) | 69 (74.2) | 55 (59.8) | 62 (67.4) |
Body Mass Index (kg/m2) | 26.5 | 28.5 | 26.8 | 28.5 | 27.7 |
Total caloric intake (kcal) | 1926.9 | 1971.3 | 1936.6 | 1947.4 | 1940.9 |
Glycemic load | 116.1 | 118.4 | 119.6 | 127.9 | 125.0 |
Fruit/vegetable consumption (servings/day) | 1.7 | 2.6 | 3.2 | 4.3 | 6.3 |
Total fat consumption (g) | 68.8 | 76.9 | 76.1 | 71.0 | 67.4 |
Whole grain intake quintile (g/day) | 1 13.70 | 2 13.71–23.41 | 3 23.43–32.95 | 4 32.96–44.29 | 5 >44.29 |
Mean whole grain intake (g) | 8.5 | 18.5 | 27.9 | 38.2 | 61.1 |
Age | 60.15 | 62.44 | 59.02 | 61.26 | 62.31 |
Females (%) | 18 (19.6) | 28 (30.4) | 21 (22.6) | 25 (27.2) | 24 (26.1) |
Some college or more (%) | 43 (47.3) | 55 (60.4) | 62 (67.4) | 66 (71.7) | 72 (78.3) |
Stages III, IV (%) | 58 (63.0) | 64 (69.6) | 71 (76.3) | 67 (72.8) | 81 (88.0) |
Current smoker (%) | 48 (52.2) | 37 (40.2) | 32 (34.4) | 29 (31.9) | 22 (23.9) |
Current drinker (%) | 66 (71.7) | 60 (65.2) | 70 (75.3) | 65 (71.4) | 58 (63.0) |
Body Mass Index (kg/m2) | 26.6 | 27.1 | 28.0 | 28.3 | 28.0 |
Total caloric intake (kcal) | 2005.0 | 1826.3 | 2011.1 | 2022.3 | 1884.7 |
Glycemic load | 114.1 | 120.0 | 120.9 | 123.1 | 132.6 |
Fruit/vegetable consumption (servings/day) | 2.7 | 3.4 | 3.8 | 4.1 | 4.3 |
Total fat consumption (g) | 74.0 | 74.9 | 71.0 | 72.5 | 68.4 |
Fiber Intake Quintile and Range (g/day) | 1 12.94 | 2 12.94–15.87 | 3 15.90–19.00 | 4 19.05–22.91 | 5 >22.91 | ptrend4 |
All-cause mortality | ||||||
1 Model 1 | Referent | 0.65 (0.39–1.10) | 0.52 (0.30–0.90) * | 0.66 (0.39–1.12) | 0.34 (0.18–0.63) *** | 0.002 ** |
2 Model 2 | Referent | 0.79 (0.46–1.35) | 0.59 (0.34–1.05) | 0.76 (0.45–1.31) | 0.41 (0.21–0.78) ** | 0.014 * |
3 Model 3 | Referent | 0.83 (0.43–1.59) | 0.63 (0.32–1.25) | 0.68 (0.30–1.52) | 0.37 (0.14–0.95) * | 0.04 * |
Fiber intake quintile and range (g/day) | 1 13.21 | 2 13.41–16.03 | 3 16.04–19.11 | 4 19.22–23.17 | 5 >23.20 | ptrend4 |
Cancer-specific mortality | ||||||
1 Model 1 | Referent | 0.84 (0.43–1.66) | 0.73 (0.37–1.46) | 0.76 (0.38–1.52) | 0.48 (0.22–1.03) | 0.06 |
2 Model 2 | Referent | 1.01 (0.51–2.01) | 0.79 (0.39–1.63) | 0.83 (0.41–1.69) | 0.63 (0.28–1.40) | 0.22 |
3 Model 3 | Referent | 1.10 (0.48–2.51) | 0.80 (0.33–1.94) | 0.68 (0.24–1.93) | 0.46 (0.14–1.52) | 0.14 |
Whole grain intake quintile and range (g/day) | 1 13.70 | 2 13.71–23.41 | 3 23.43–32.95 | 4 32.96–44.29 | 5 >44.29 | ptrend4 |
All-cause mortality | ||||||
1 Model 1 | Referent | 0.96 (0.58–1.60) | 0.55 (0.30–1.00) * | 0.66 (0.37–1.15) | 0.65 (0.38–1.13) | 0.07 |
2 Model 2 | Referent | 0.88 (0.53–1.47) | 0.60 (0.33–1.10) | 0.71 (0.40–1.25) | 0.65 (0.37–1.15) | 0.12 |
3 Model 3 | Referent | 0.85 (0.50–1.46) | 0.63 (0.33–1.20) | 0.89 (0.47–1.68) | 0.64 (0.34–1.24) | 0.24 |
Whole grain intake quintile and range (g/day) | 1 14.12 | 2 14.23–23.97 | 3 24.10–33.16 | 4 33.16–44.42 | 5 >44.60 | ptrend4 |
Cancer-specific mortality | ||||||
1 Model 1 | Referent | 1.16 (0.59–2.28) | 0.84 (0.40–1.77) | 0.91 (0.45–1.88) | 0.80 (0.39–1.66) | 0.08 |
2 Model 2 | Referent | 1.12 (0.57–2.20) | 0.95 (0.45–2.03) | 0.97 (0.47–2.00) | 0.87 (0.41–1.87) | 0.24 |
3 Model 3 | Referent | 1.17 (0.57–2.39) | 0.92 (0.41–2.07) | 1.22 (0.54–2.75) | 0.83 (0.35–1.95) | 0.18 |
Fiber Intake Quintile and Range (g/day) | 1 12.94 | 2 12.94–15.87 | 3 15.90–19.00 | 4 19.05–22.91 | 5 >22.91 | ptrend2 |
---|---|---|---|---|---|---|
All-cause mortality | ||||||
1 Model 3 | Referent | 1.16 (0.72–1.85) | 0.83 (0.52–1.33) | 0.54 (0.31–0.95) * | 0.22 (0.10–0.48) *** | <0.0001 *** |
Fiber Intake Quintile and Range (g/day) | 1 12.94 | 2 12.94–15.87 | 3 15.90–19.00 | 4 19.05–22.91 | 5 >22.91 | ptrend4 |
Recurrence | ||||||
1 Model 1 | Referent | 1.07 (0.60–1.88) | 0.87 (0.48–1.57) | 0.74 (0.40–1.36) | 0.69 (0.37–1.28) | 0.10 |
2 Model 2 | Referent | 1.31 (0.74–2.34) | 0.97 (0.53–1.77) | 0.85 (0.45–1.58) | 0.93 (0.49–1.78) | 0.43 |
3 Model 3 | Referent | 1.42 (0.73–2.75) | 0.98 (0.49–1.98) | 0.74 (0.32–1.73) | 0.77 (0.30–1.97) | 0.33 |
Whole grain intake quintile and range (g/day) | 1 13.70 | 2 13.71–23.41 | 3 23.43–32.95 | 4 32.96-44.29 | 5 >44.29 | ptrend4 |
Recurrence | ||||||
1 Model 1 | Referent | 1.00 (0.58–1.75) | 0.70 (0.38–1.27) | 0.70 (0.38–1.27) | 0.72 (0.40–1.30) | 0.22 |
2 Model 2 | Referent | 0.96 (0.55–1.67) | 0.72 (0.39–1.33) | 0.87 (0.48–1.56) | 0.81 (0.44–1.48) | 0.53 |
3 Model 3 | Referent | 1.06 (0.59–1.92) | 0.77 (0.40–1.50) | 1.06 (0.56–2.04) | 0.76 (0.38–1.50) | 0.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).