Screening of Cytotoxicity and Anti-Inflammatory Properties of Feijoa Extracts Using Genetically Modified Cell Models Targeting TLR2, TLR4 and NOD2 Pathways, and the Implication for Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feijoa Fruits and Extracts
2.2. Cell Line and Culture Media
2.3. Cell Viability Screening of Feijoa Extracts
2.4. Anti-Inflammatory Assay
2.5. Data Analysis
3. Results
3.1. Feijoa Peel Induced Higher Cytotoxicity than Flesh and Whole Fruit Extracts
3.2. Potential Anti-Inflammatory Activity of Feijoa through TLR2 and TLR4 Pathways
3.3. Activation of the Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Anti-Inflammation Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weston, R.J. Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. Food Chem. 2010, 121, 923–926. [Google Scholar] [CrossRef]
- Sharpe, R.H.; Sherman, W.B.; Miller, E.P. Feijoa history and improvement. Proc. Fla. State Hortic. Soc. 1993, 106, 134–139. [Google Scholar]
- Basile, A.; Conte, B.; Rigano, D.; Senatore, F.; Sorbo, S. Antibacterial and antifungal properties of acetonic extract of Feijoa sellowiana fruits and its effect on Helicobacter pylori growth. J. Med. Food 2010, 13, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Keles, H.; Ince, S.; Küçükkurt, I.; Tatli, I.I.; Akkol, E.K.; Kahraman, C.; Demirel, H.H. The effects of Feijoa sellowiana fruits on the antioxidant defense system, lipid peroxidation, and tissue morphology in rats. Pharm. Biol. 2012, 50, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Nasef, N.A.; Mehta, S.; Murray, P.; Marlow, G.; Ferguson, L.R. Anti-inflammatory activity of fruit fractions in vitro, mediated through toll-like receptor 4 and 2 in the context of inflammatory bowel disease. Nutrients 2014, 6, 5265–5279. [Google Scholar] [CrossRef] [PubMed]
- Turco, F.; Palumbo, I.; Andreozzi, P.; Sarnelli, G.; De Ruberto, F.; Esposito, G.; Basile, A.; Cuomo, R. Acetonic extract from the feijoa sellowiana Berg. fruit exerts antioxidant properties and modulates disaccharidases activities in human intestinal epithelial cells. Phytother. Res. 2016, 30, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Kchaou, W.; Abbès, F.; Mansour, R.B.; Blecker, C.; Attia, H.; Besbes, S. Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.). Food Chem. 2016, 194, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Maretić, M.; Lugarić, I.; Mešić, A.; Salopek-Sondi, B.; Duralija, B. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chem. 2016, 194, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Burgos, E.C.; Burgos-Hernández, A.; Noguera-Artiaga, L.; Kačániová, M.; Hernández-García, F.; Cárdenas-López, J.L.; Carbonell-Barrachina, Á.A. Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J. Sci. Food Agric. 2017, 97, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, K.L.; Peroni, N.; Guries, R.P.; Nodari, R.O. Traditional knowledge and management of Feijoa (Acca sellowiana) in Southern Brazil. Econ. Bot. 2009, 63, 204–214. [Google Scholar] [CrossRef]
- Siegel, C. Review article: Explaining risks of inflammatory bowel disease therapy to patients. Aliment. Pharmacol. Ther. 2011, 33, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010, 122, 987–996. [Google Scholar] [CrossRef]
- Lewis, D.A.; Tharib, S.M.; Veitch, G.B.A. The anti-inflammatory activity of celery Apium graveolens L. (Fam. Umbelliferae). Int. J. Crude Drug Res. 1985, 23, 27–32. [Google Scholar] [CrossRef]
- Pan, M.H.; Lai, C.S.; Ho, C.T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Nasef, N.A.; Mehta, S.; Powell, P.; Marlow, G.; Wileman, T.; Ferguson, L.R. Extracts of Feijoa inhibit Toll-like receptor 2 signaling and Activate Autophagy Implicating a role in dietary control of IBD. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, P. Inflammatory mechanisms: The molecular basis of inflammation and disease. Nutr. Rev. 2007, 65, S140–S146. [Google Scholar] [CrossRef] [PubMed]
- Kigerl, K.A.; Lai, W.; Rivest, S.; Hart, R.P.; Satoskar, A.R.; Popovich, P.G. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J. Neurochem. 2007, 102, 37–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asea, A.; Rehli, M.; Kabingu, E.; Boch, J.A.; Baré, O.; Auron, P.E.; Stevenson, M.A.; Calderwood, S.K. Novel signal transduction pathway utilized by extracellular HSP70 role of Toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 2002, 277, 15028–15034. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, B.; Veres, G.; Dezsofi, A.; Rusai, K.; Vannay, A.; Mraz, M.; Majorova, E.; Arato, A. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin. Exp. Immunol. 2008, 151, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Borzutzky, A.; Fried, A.; Chou, J.; Bonilla, F.A.; Kim, S.; Dedeoglu, F. NOD2-associated diseases: Bridging innate immunity and autoinflammation. Clin. Immunol. 2010, 134, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.; Hedley, L.E. Feijoa Variety Named Opal Star. U.S. Patent 8,825, 12 July 1994. [Google Scholar]
- Thorp, G.; Bieleski, R.L. Feijoas: Origins, Cultivation and Uses; HortResearch: Auckland, New Zealand, 2002. [Google Scholar]
- Waimea Nurseries Ltd. Feijoa Varieties for Fruit Growers-Commercial-Waimea Nurseries. Available online: http://www.webcitation.org/7203R3ror (accessed on 28 August 2018).
- Folkard, D.L.; Marlow, G.; Mithen, R.F.; Ferguson, L.R. Effect of Sulforaphane on NOD2 via NF-κB: Implications for Crohn’s disease. J. Inflamm. 2015, 12. [Google Scholar] [CrossRef] [PubMed]
- Philpott, M.; Mackay, L.; Ferguson, L.R.; Forbes, D.; Skinner, M. Cell culture models in developing nutrigenomics foods for inflammatory bowel disease. Mutat. Res. 2007, 622, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell proliferation and cytotoxicity assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci. 2009, 1, 38–46. [Google Scholar]
- Klymenko, T.; Brandenburg, M.; Morrow, C.J.; Dive, C.; Makin, G. The novel Bcl-2 inhibitor ABT-737 is more effective in hypoxia, and is able to reverse hypoxia-induced drug resistance in neuroblastoma cells. Mol. Cancer Ther. 2011. [Google Scholar] [CrossRef] [PubMed]
- Ranke, J.; Mölter, K.; Stock, F.; Bottin-Weber, U.; Poczobutt, J.; Hoffmann, J.; Ondruschka, B.; Filser, J.; Jastorff, B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf. 2004, 58, 396–404. [Google Scholar] [CrossRef]
- Berridge, M.V.; Tan, A.S.; McCoy, K.D.; Wang, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 1996, 4, 14–19. [Google Scholar]
- Nedel, F.; Soki, F.N.; Conde, M.C.M.; Zeitlin, B.D.; Tarquinio, S.B.C.; Nör, J.E.; Seixas, F.K.; Demarco, F.F. Comparative analysis of two colorimetric assays in dental pulp cell density. Int. Endod. J. 2011, 44, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, M.P.; Kennedy, D.R.; Kennedy, J.S.; Washabau, R.J.; Henthorn, P.S.; Moore, P.F.; Carding, S.R.; Felsburg, P.J. Expression and function of TLR2, TLR4, and Nod2 in primary canine colonic epithelial cells. Vet. Immunol. Immunopathol. 2006, 114, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvatore, A.; Borkosky, S.; Willink, E.; Bardon, A. Toxic effects of lemon peel constituents on Ceratitis capitata. J. Chem. Ecol. 2004, 30, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Kuganesan, A.; Thiripuranathar, G.; Navaratne, A.; Paranagama, P. Antioxidant and anti-inflammatory activities of peels, pulps and seed kernels of three common mango (Mangifera indical L.) varieties in Sri Lanka. Int. J. Pharm. Sci. Res. 2017, 8, 70–78. [Google Scholar]
- Dabbou, S.; Maatallah, S.; Castagna, A.; Guizani, M.; Sghaeir, W.; Hajlaoui, H.; Ranieri, A. Carotenoids, phenolic profile, mineral content and antioxidant properties in flesh and peel of Prunus persica fruits during two maturation stages. Plant Foods Hum. Nutr. 2017, 72, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Lecat, A.; Piette, J.; Legrand-Poels, S. The protein Nod2: An innate receptor more complex than previously assumed. Biochem. Pharmacol. 2010, 80, 2021–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Fruit polyphenols: A review of anti-inflammatory effects in humans. Crit. Rev. Food Sci. Nutr. 2016, 56, 419–444. [Google Scholar] [CrossRef] [PubMed]
- de Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [PubMed]
- Bouic, P.J. The role of phytosterols and phytosterolins in immune modulation: A review of the past 10 years. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Elmastaş, M.; Gedikli, F. Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). J. Med. Plant. Res. 2010, 4, 1065–1072. [Google Scholar]
- Tuncel, N.B.; Yılmaz, N. Optimizing the extraction of phenolics and antioxidants from feijoa (Feijoa sellowiana, Myrtaceae). J. Food Sci. Technol. 2015, 52, 141–150. [Google Scholar] [CrossRef]
- Aoyama, H.; Sakagami, H.; Hatano, T. Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana. Biosci. Biotechnol. Biochem. 2018, 82, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Takegawa, D.; Hirao, K.; Takahashi, K.; Yumoto, H.; Matsuo, T. Roles of dental pulp fibroblasts in the recognition of bacterium-related factors and subsequent development of pulpitis. Jpn. Dent. Sci. Rev. 2011, 47, 161–166. [Google Scholar] [CrossRef]
- Natsuka, M.; Uehara, A.; Yang, S.; Echigo, S.; Takada, H. A polymer-type water-soluble peptidoglycan exhibited both Toll-like receptor 2-and NOD2-agonistic activities, resulting in synergistic activation of human monocytic cells. Innate Immun. 2008, 14, 298–308. [Google Scholar] [CrossRef] [PubMed]
Cell Line | Flesh (μg/mL) | Peel (μg/mL) | Whole Fruit (μg/mL) |
---|---|---|---|
HEK-Blue™ hTLR2 | 419.50 | 77.19 | 252.80 |
HEK-Blue™ hTLR4 | 360.60 | 79.17 | 257.20 |
NOD2-WT | 190.50 | 83.57 | 200.00 |
NOD2-G908R | 232.90 | 100.40 | 247.10 |
Mean (SD) | 300.88 ± 92.79 | 85.08 ± 9.14 | 239.28 ± 22.96 |
Conc. (μg/mL) | HEK-Blue™ hTLR2 | HEK-Blue™ hTLR4 | NOD2-WT | NOD2-G908R | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | WF | F | P | WF | F | P | WF | F | P | WF | |
APOLLLO | ||||||||||||
142.86 | 0.63 ± 0.06 ab/BC * | 0.54 ± 0.09 a/AB * | 0.66 ± 0.07 a/BC * | 0.66 ± 0.10 ab/BC | 0.41 ± 0.07 a/A * | 0.64 ± 0.05 a/BC * | 0.72 ± 0.13 ab/BC | 0.57 ± 0.12 abc/BC | 0.69 ± 0.13 ab/BC | 0.71 ± 0.04 ab/BC | 0.63 ± 0.05 abc/BC | 0.73 ± 0.08 abc/C |
71.43 | 0.80 ± 0.05 cdef/BC | 0.60 ± 0.06 a/A * | 0.83 ± 0.04 bcd/BC | 0.78 ± 0.07 bcdef/BC | 0.57 ± 0.07 b/A * | 0.80 ± 0.05 cde/BC | 0.88 ± 0.06 ab/C | 0.68 ± 0.12 abcde/AB | 0.85 ± 0.14 ab/BC | 0.79 ± 0.04 abcd/BC | 0.76 ± 0.12 abcdefg/BC | 0.88 ± 0.16 abcde/BC |
35.71 | 0.86 ± 0.08 defg/A | 0.86 ± 0.04 cde/A | 0.90 ± 0.02 de/A | 0.81 ± 0.06 cdefg/A | 0.78 ± 0.08 defg/A | 0.87 ± 0.04 efgh/A | 0.94 ± 0.10 ab/A | 0.78 ± 0.08 bcdef/A | 0.94 ± 0.11 b/A | 0.87 ± 0.06 bcd/A | 0.85 ± 0.08 cdefghi/A | 0.91 ± 0.10 abcde/A |
17.86 | 0.90 ± 0.06 efg/A | 0.91 ± 0.03 de/A | 0.92 ± 0.03 de/A | 0.88 ± 0.05 fgh/A | 0.87 ± 0.08 efgh/A | 0.90 ± 0.06 efgh/A | 0.96 ± 0.10 ab/A | 0.89 ± 0.12 def/A | 1.00 ± 0.15 b/A | 0.89 ± 0.09 bcd/A | 1.00 ± 0.23 defghi/A | 1.04 ± 0.24 abcde/A |
8.93 | 0.92 ± 0.06 fg/A | 0.93 ± 0.04 de/A | 0.96 ± 0.03 de/A | 0.93 ± 0.06 gh/A | 0.92 ± 0.06 hi/A | 0.94 ± 0.04 gh/A | 1.01 ± 0.11 ab/A | 0.91 ± 0.08 ef/A | 1.02 ± 0.12 b/A | 0.91 ± 0.09 bcd/A | 0.94 ± 0.09 fghi/A | 1.00 ± 0.14 cde/A |
4.46 | 0.94 ± 0.11 g/A | 0.96 ± 0.03 e/A | 0.97 ± 0.04 e/A | 0.98 ± 0.08 h/A | 0.99 ± 0.04 i/A | 0.98 ± 0.04 h/A | 1.04 ± 0.11 b/A | 0.96 ± 0.10 ef/A | 1.07 ± 0.15 b/A | 0.94 ± 0.08 d/A | 0.98 ± 0.08 ghi/A | 1.02 ± 0.11 de/A |
UNIQUE | ||||||||||||
142.86 | 0.63 ± 0.08 ab/BCD * | 0.57 ± 0.07 a/ABC * | 0.71 ± 0.06 a/CD * | 0.72 ± 0.08 abcde/CD | 0.51 ± 0.06 a/A * | 0.65 ± 0.06 ab/BCD * | 0.69 ± 0.15 a/CD | 0.44 ± 0.12 a/A | 0.50 ± 0.12 a/AB | 0.77 ± 0.05 abcd/D | 0.56 ± 0.04 a/ABC | 0.65 ± 0.04 a/BCD |
71.43 | 0.79 ± 0.06 cde/CD | 0.74 ± 0.04 b/BCD * | 0.83 ± 0.04 bcd/D | 0.82 ± 0.09 cdefg/D | 0.60 ± 0.09 bc/AB * | 0.80 ± 0.06 cde/CD | 0.79 ± 0.11 ab/CD | 0.53 ± 0.14 ab/A | 0.66 ± 0.07 ab/BC | 0.83 ± 0.05 abcd/D | 0.70 ± 0.04 abcde/BCD | 0.81 ± 0.04 abcde/CD |
35.71 | 0.83 ± 0.03 cdefg/ABCD | 0.88 ± 0.03 cde/BCD | 0.86 ± 0.03 bcde/BCD | 0.87 ± 0.10 fgh/BCD | 0.77 ± 0.06 def/ABC | 0.84 ± 0.07 defg/BCD | 0.80 ± 0.07 ab/ABCD | 0.69 ± 0.10 abcde/A | 0.75 ± 0.07 ab/AB | 0.91 ± 0.06 bcd/CD | 0.92 ± 0.07 defghi/D | 0.92 ± 0.08 bcde/D |
17.86 | 0.85 ± 0.06 cdefg/AB | 0.90 ± 0.03 de/AB | 0.89 ± 0.06 cde/AB | 0.90 ± 0.08 fgh/AB | 0.85 ± 0.04 efgh/AB | 0.89 ± 0.09 efgh/AB | 0.87 ± 0.15 ab/AB | 0.89 ± 0.08 ef/AB | 0.91 ± 0.24 b/A | 0.89 ± 0.06 bcd/AB | 1.00 ± 0.07 hi/B | 0.98 ± 0.09 cde/B |
8.93 | 0.89 ± 0.05 efg/AB | 0.92 ± 0.06 de/AB | 0.93 ± 0.04 de/AB | 0.89 ± 0.09 gh/AB | 0.90 ± 0.04 ghi/AB | 0.90 ± 0.07 efgh/AB | 0.82 ± 0.06 ab/A | 0.94 ± 0.11 ef/AB | 0.93 ± 0.17 b/A | 0.86 ± 0.07 bcd/AB | 1.01 ± 0.10 i/B | 1.01 ± 0.07 cde/B |
4.46 | 0.92 ± 0.05 fg/ABCD | 0.94 ± 0.04 de/ABCD | 0.95 ± 0.05 de/BCD | 0.90 ± 0.04 h/ABC | 0.91 ± 0.03 hi/ABCD | 0.92 ± 0.04 fgh/ABCD | 0.82 ± 0.05 ab/A | 1.02 ± 0.10 f/CD | 0.93 ± 0.16 b/AB | 0.84 ± 0.03 bcd/AB | 1.03 ± 0.08 hi/D | 1.00 ± 0.05 cde/CD |
OPAL STAR | ||||||||||||
142.86 | 0.62 ± 0.04 a/ABC | 0.58 ± 0.07 a/AB * | 0.70 ± 0.05 a/ABCD | 0.68 ± 0.07 abc/ABCD | 0.59 ± 0.08 bc/AB | 0.72 ± 0.08 abc/BCD | 0.69 ± 0.06 a/ABCD | 0.56 ± 0.08 abc/A | 0.66 ± 0.04 ab/ABCD | 0.77 ± 0.02 abcd/CD | 0.66 ± 0.06 abcd/ABCD | 0.78 ± 0.06 abcd/D |
71.43 | 0.73 ± 0.03 abc/AB | 0.78 ± 0.05 bc/AB | 0.76 ± 0.05 abc/AB | 0.71 ± 0.06 abcde/AB | 0.69 ± 0.07 cd/A | 0.79 ± 0.06 cde/AB | 0.78 ± 0.01 ab/AB | 0.68 ± 0.08 abcde/A | 0.79 ± 0.00 ab/AB | 0.85 ± 0.07 abcd/B | 0.80 ± 0.10 bcdefgh/AB | 0.86 ± 0.04 abcde/B |
35.71 | 0.83 ± 0.06 cdefg/AB | 0.86 ± 0.06 cde/AB | 0.84 ± 0.08 bcde/AB | 0.79 ± 0.05 bcdefg/A | 0.83 ± 0.08 efgh/AB | 0.86 ± 0.06 defg/AB | 0.84 ± 0.02 ab/AB | 0.79 ± 0.06 bcdef/A | 0.86 ± 0.04 ab/AB | 0.88 ± 0.04 bcd/AB | 0.91 ± 0.07 efghi/AB | 0.96 ± 0.10 bcde/B |
17.86 | 0.86 ± 0.04 defg/AB | 0.89 ± 0.04 cde/AB | 0.90 ± 0.08 de/AB | 0.81 ± 0.05 cdefg/A | 0.87 ± 0.08 efgh/AB | 0.85 ± 0.09 defg/AB | 0.90 ± 0.05 ab/AB | 0.89 ± 0.03 def/AB | 0.93 ± 0.06 b/AB | 0.89 ± 0.04 bcd/AB | 0.98 ± 0.08 ghi/B | 0.98 ± 0.05 cde/B |
8.93 | 0.88 ± 0.04 efg/A | 0.92 ± 0.06 de/A | 0.91 ± 0.05 de/A | 0.82 ± 0.06 cdefg/A | 0.87 ± 0.07 efgh/A | 0.88 ± 0.06 efgh/A | 0.91 ± 0.06 ab/A | 0.94 ± 0.06 ef/AB | 0.98 ± 0.12 b/A | 0.93 ± 0.05 cd/AB | 0.97 ± 0.10 ghi/AB | 1.08 ± 0.07 e/B |
4.46 | 0.88 ± 0.06 efg/AB | 0.94 ± 0.04 de/AB | 0.97 ± 0.05 e/AB | 0.83 ± 0.08 defg/A | 0.88 ± 0.11 fghi/AB | 0.91 ± 0.08 efgh/AB | 0.93 ± 0.08 ab/AB | 0.98 ± 0.04 ef/AB | 1.01 ± 0.07 b/AB | 0.90 ± 0.03 bcd/B | 0.99 ± 0.10 ghi/AB | 1.03 ± 0.02 de/AB |
WIKI TU | ||||||||||||
142.86 | 0.74 ± 0.08 ab/BC * | 0.58 ± 0.08 a/A * | 0.76 ± 0.09 ab/C | 0.64 ± 0.04 a/ABC | 0.60 ± 0.06 bc/AB * | 0.67 ± 0.04 ab/ABC | 0.68 ± 0.05 a/ABC | 0.60 ± 0.06 abcd/AB | 0.72 ± 0.07 ab/ABC | 0.65 ± 0.03 a/ABC | 0.60 ± 0.03 ab/AB | 0.68 ± 0.02 ab/ABC |
71.43 | 0.85 ± 0.09 cdefg/A | 0.82 ± 0.12 bcd/A | 0.87 ± 0.10 bcde/A | 0.70 ± 0.04 abcd/A | 0.75 ± 0.06 de/A | 0.74 ± 0.04 bcd/A | 0.81 ± 0.08 ab/A | 0.72 ± 0.07 bcde/A | 0.84 ± 0.10 ab/A | 0.71 ± 0.04 ab/A | 0.72 ± 0.04 abcdef/A | 0.79 ± 0.04 abcde/A |
35.71 | 0.86 ± 0.10 defg/A | 0.86 ± 0.07 cde/A | 0.90 ± 0.10 de/A | 0.77 ± 0.07 abcdef/A | 0.82 ± 0.05 efgh/A | 0.79 ± 0.04 cde/A | 0.79 ± 0.05 ab/A | 0.81 ± 0.07 cdef/A | 0.85 ± 0.08 ab/A | 0.73 ± 0.06 abc/A | 0.81 ± 0.02 abcdefg/A | 0.81 ± 0.04 abcde/A |
17.86 | 0.91 ± 0.10 fg/AB | 0.89 ± 0.09 cde/AB | 0.93 ± 0.11 de/B | 0.78 ± 0.06 bcdef/AB | 0.84 ± 0.03 efgh/AB | 0.82 ± 0.06 cdef/AB | 0.85 ± 0.09 ab/AB | 0.88 ± 0.06 def/AB | 0.93 ± 0.07 b/B | 0.73 ± 0.06 abcd/A | 0.88 ± 0.03 defghi/AB | 0.81 ± 0.08 abcde/AB |
8.93 | 0.93 ± 0.09 fg/AB | 0.92 ± 0.08 de/AB | 0.97 ± 0.10 e/B | 0.86 ± 0.08 efgh/AB | 0.86 ± 0.03 efgh/AB | 0.84 ± 0.04 defg/AB | 0.91 ± 0.13 ab/AB | 0.89 ± 0.06 def/AB | 0.95 ± 0.04 b/B | 0.74 ± 0.09 abcd/A | 0.89 ± 0.04 defghi/AB | 0.84 ± 0.04 abcde/AB |
4.46 | 0.95 ± 0.09 g/AB | 0.94 ± 0.06 de/AB | 0.97 ± 0.06 e/AB | 0.90 ± 0.03 fgh/AB | 0.91 ± 0.02 hi/AB | 0.90 ± 0.03 efgh/AB | 0.87 ± 0.13 ab/AB | 0.97 ± 0.06 ef/AB | 1.02 ± 0.12 b/B | 0.79 ± 0.07 abcd/A | 0.82 ± 0.07 bcdefghi/AB | 0.87 ± 0.08 abcde/AB |
APOLLO (μg/mL) | UNIQUE (μg/mL) | OPAL STAR (μg/mL) | WIKI TU (μg/mL) | IB (μg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | WF | F | P | WF | F | P | WF | F | P | WF | ||
IC30 | 4.06 | 5.87 | 11.90 | 7.26 | 9.31 | 18.35 | 8.04 | 11.12 | 16.32 | 8.37 | 11.86 | 89.38 | 230.72 |
IC50 | 7.88 | 12.81 | 30.84 | 13.70 | 26.68 | 55.80 | 16.70 | 31.74 | 48.40 | 17.97 | 41.24 | N/A | 442.90 |
IC70 | 21.42 | 42.32 | 133.31 | 35.90 | 76.45 | N/A | 50.67 | N/A | N/A | 57.26 | N/A | N/A | N/A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Bishop, K.S.; Ferguson, L.R.; Quek, S.Y. Screening of Cytotoxicity and Anti-Inflammatory Properties of Feijoa Extracts Using Genetically Modified Cell Models Targeting TLR2, TLR4 and NOD2 Pathways, and the Implication for Inflammatory Bowel Disease. Nutrients 2018, 10, 1188. https://doi.org/10.3390/nu10091188
Peng Y, Bishop KS, Ferguson LR, Quek SY. Screening of Cytotoxicity and Anti-Inflammatory Properties of Feijoa Extracts Using Genetically Modified Cell Models Targeting TLR2, TLR4 and NOD2 Pathways, and the Implication for Inflammatory Bowel Disease. Nutrients. 2018; 10(9):1188. https://doi.org/10.3390/nu10091188
Chicago/Turabian StylePeng, Yaoyao, Karen Suzanne Bishop, Lynnette Robin Ferguson, and Siew Young Quek. 2018. "Screening of Cytotoxicity and Anti-Inflammatory Properties of Feijoa Extracts Using Genetically Modified Cell Models Targeting TLR2, TLR4 and NOD2 Pathways, and the Implication for Inflammatory Bowel Disease" Nutrients 10, no. 9: 1188. https://doi.org/10.3390/nu10091188
APA StylePeng, Y., Bishop, K. S., Ferguson, L. R., & Quek, S. Y. (2018). Screening of Cytotoxicity and Anti-Inflammatory Properties of Feijoa Extracts Using Genetically Modified Cell Models Targeting TLR2, TLR4 and NOD2 Pathways, and the Implication for Inflammatory Bowel Disease. Nutrients, 10(9), 1188. https://doi.org/10.3390/nu10091188