Type 1 Diabetic Subjects with Diabetic Retinopathy Show an Unfavorable Pattern of Fat Intake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Variables
2.2. Dietary and Nutritional Assessment
2.3. Assessment of Diabetic Retinopathy
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klein, R.; Lee, K.E.; Gangnon, R.E.; Klein, B.E.K. The 25-Year Incidence of Visual Impairment in Type 1 Diabetes Mellitus. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 2010, 117, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Romero-Aroca, P.; Baget-Bernaldiz, M.; Fernandez-Ballart, J.; Plana-Gil, N.; Soler-Lluis, N.; Mendez-Marin, I.; Bautista-Perez, A. Ten-year incidence of diabetic retinopathy and macular edema. Risk factors in a sample of people with type 1 diabetes. Diabetes Res. Clin. Pract. 2011, 94, 126–132. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Lifestyle management. Sec. 4. In Standards of Medical Care in Diabetes-2017. Diabetes Care 2017, 40, S33–S43. [Google Scholar] [CrossRef]
- Dow, C.; Mancini, F.; Rajaobelina, K.; Boutron-Ruault, M.-C.; Balkau, B.; Bonnet, F.; Fagherazzi, G. Diet and risk of diabetic retinopathy: A systematic review. Eur. J. Epidemiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.Y.Z.; Man, R.E.K.; Fenwick, E.K.; Gupta, P.; Li, L.-J.; van Dam, R.M.; Chong, M.F.; Lamoureux, E.L. Dietary intake and diabetic retinopathy: A systematic review. PLoS ONE 2018, 13, e0186582. [Google Scholar] [CrossRef] [PubMed]
- Cundiff, D.K.; Nigg, C.R. Diet and diabetic retinopathy: Insights from the Diabetes Control and Complications Trial (DCCT). Med. Gen. Med. 2005, 7, 3. [Google Scholar]
- Roy, M.S.; Janal, M.N. High caloric and sodium intakes as risk factors for progression of retinopathy in type 1 diabetes mellitus. Arch. Ophthalmol. 2010, 128, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Kawasaki, R.; Rogers, S.; Man, R.E.K.; Itakura, K.; Xie, J.; Flood, V.; Tsubota, K.; Lamoureux, E.; Wang, J.J. The associations of dietary intake of polyunsaturated fatty acids with diabetic retinopathy in well-controlled diabetes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7473–7479. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.; Kruidhof, J.; Grobbee, D. Alcohol consumption and risk of microvascular complications in type 1 diabetes patients: The EURODIAB Prospective Complications Study. Diabetologia 2008, 51, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Engelen, L.; Soedamah-Muthu, S.S.; Geleijnse, J.M.; Toeller, M.; Chaturvedi, N.; Fuller, J.H.; Schalkwijk, C.G.; Stehouwer, C.D.A. Higher dietary salt intake is associated with microalbuminuria, but not with retinopathy in individuals with type 1 diabetes: The EURODIAB Prospective Complications Study. Diabetologia 2014, 57, 2315–2323. [Google Scholar] [CrossRef] [PubMed]
- Harjutsalo, V.; Feodoroff, M.; Forsblom, C.; Groop, P.H. Patients with Type 1 diabetes consuming alcoholic spirits have an increased risk of microvascular complications. Diabet. Med. 2014, 31, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.E.; Klein, R.; Klein, B.E. Alcohol consumption and the prevalence of diabetic retinopathy. Ophthalmology 1992, 99, 926–932. [Google Scholar] [CrossRef]
- Recomendaciones Nutricionales y de Educación Alimentaria en la Diabetes; ACD: Barcelona, Spain, 2013; Available online: http://www.acdiabetis.org/d_avui/docs/Document_de_consens_pdf (accessed on 8 July 2018).
- Granado-Casas, M.; Alcubierre, N.; Martín, M.; Real, J.; Ramírez-Morros, A.M.; Cuadrado, M.; Alonso, N.; Falguera, M.; Hernández, M.; Aguilera, E.; et al. Improved adherence to Mediterranean Diet in adults with type 1 diabetes mellitus. Eur. J. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Alcubierre, N.; Navarrete-Muñoz, E.M.; Rubinat, E.; Falguera, M.; Valls, J.; Traveset, A.; Vilanova, M.-B.; Marsal, J.R.; Hernandez, M.; Granado-Casas, M.; et al. Association of low oleic acid intake with diabetic retinopathy in type 2 diabetic patients: A case-control study. Nutr. Metab. 2016, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M.S.; Morabia, A.; Sloutskis, D. Definition and prevalence of sedentarism in an urban population. Am. J. Public Health 1999, 89, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Cabrera de León, A.; Rodríguez-Pérez, M.D.C.; Rodríguez-Benjumeda, L.M.; Anía-Lafuente, B.; Brito-Díaz, B.; Muros de Fuentes, M.; Almeida-González, D.; Batista-Medina, M.; Aguirre-Jaime, A. Sedentary lifestyle: Physical activity duration versus percentage of energy expenditure. Rev. Esp. Cardiol. 2007, 60, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-de-la-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Department of Agriculture Agricultural Research Service. USDA National Nutrient Database for Standard Reference. Available online: https://www.ars.usda.gov/ (accessed on 1 July 2018).
- Palma, I.; Farran, P.; Cervera, P. Tablas de Composición de Alimentos por Medidas Caseras de Consumo Habitual en España; Mc Graw Hill Interamericana: Barcelona, Spain, 2008. [Google Scholar]
- Food Standards Agency. McCance and Widdowson´s The Composition of Foods, 6th ed.; Royal Society of Chemistry: Cambridge, UK, 2002. [Google Scholar]
- Wilkinson, C.P.; Ferris, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T.; et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef]
- Díaz-López, A.; Babio, N.; Martínez-González, M.A.; Corella, D.; Amor, A.J.; Fitó, M.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Mediterranean Diet, Retinopathy, Nephropathy, and Microvascular Diabetes Complications: A Post Hoc Analysis of a Randomized Trial. Diabetes Care 2015, 38, 2134–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala-Vila, A.; Díaz-López, A.; Valls-Pedret, C.; Cofán, M.; García-Layana, A.; Lamuela-Raventós, R.-M.; Castañer, O.; Zanon-Moreno, V.; Martinez-Gonzalez, M.A.; Toledo, E.; et al. Dietary Marine ω-3 Fatty Acids and Incident Sight-Threatening Retinopathy in Middle-Aged and Older Individuals with Type 2 Diabetes: Prospective Investigation from the PREDIMED Trial. JAMA Ophthalmol. 2016, 134, 1142. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Strasser, B.; Hoffmann, G. Effects of Monounsaturated Fatty Acids on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Ann. Nutr. Metab. 2011, 59, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids and risk of cardiovascular disease: Synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients 2012, 4, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kotwani, A. Omega-3 fatty acids in prevention of diabetic retinopathy. J. Pharm. Pharmacol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, C.; Yoshimura, Y.; Kamada, C.; Tanaka, S.; Tanaka, S.; Matsunaga, S.; Hanyu, O.; Araki, A.; Ito, H.; Tanaka, A.; et al. Is the proportion of carbohydrate intake associated with the incidence of diabetes complications?—An analysis of the Japan diabetes complications study. Nutrients 2017, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Buyken, A.E.; Toeller, M.; Heitkamp, G.; Irsigler, K.; Holler, C.; Santeusanio, F.; Stehle, P.; Fuller, J.H.; John, G.; Viberti, G.C.; et al. Carbohydrate sources and glycaemic control in type 1 diabetes mellitus. Diabet. Med. 2000, 17, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Davis, E.J.; Bell, R.A.; Reboussin, B.A.; Rushing, J.; Marshall, J.A.; Hamman, R.F. Antioxidant nutrient intake and diabetic retinopathy. Ophthalmology 1998, 105, 2264–2270. [Google Scholar] [CrossRef]
- Millen, A.E.; Klein, R.; Folsom, A.R.; Stevens, J.; Palta, M.; Mares, J.A. Relation between intake of vitamins C and E and risk of diabetic retinopathy in the Atherosclerosis Risk in Communities Study. Am. J. Clin. Nutr. 2004, 79, 865–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Yoshimura, Y.; Kawasaki, R.; Kamada, C.; Tanaka, S.; Horikawa, C.; Ohashi, Y.; Araki, A.; Ito, H.; Akanuma, Y.; et al. Japan Diabetes Complications Study Group Fruit Intake and Incident Diabetic Retinopathy with Type 2 Diabetes. Epidemiology 2013, 24, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Romieu, I.; Scalbert, A.; Slimani, N.; Hjartåker, A.; Engeset, D.; Skeie, G.; Overvad, K.; et al. Differences in dietary intakes, food sources and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2013, 109, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Gonzalez, L. Validez de la evaluación de la ingesta dietética. In Nutrición y Salud Pública. Métodos, Bases Científicas y Aplicaciones; Serra Majem, L., Aranceta Bartrina, J., Eds.; Masson-Elsevier: Barcelona, Spain, 2006; pp. 199–210. ISBN 84-458-1528-8. [Google Scholar]
Characteristics | DR (n = 103) | No DR (n = 140) | p1 |
---|---|---|---|
Age (years) | 46.2 ± 10.8 | 42.1 ± 10.3 | 0.010 |
Sex (male) | 48 (46.6) | 62 (44.3) | 0.867 |
Educational level | 0.107 | ||
Not even primary | 4 (4.1) | 8 (5.9) | |
Completed primary | 36 (36.0) | 34 (25.2) | |
Secondary high school | 39 (40.2) | 49 (36.3) | |
Graduate or higher | 18 (18.6) | 44 (32.6) | |
Smoking | 0.602 | ||
No | 48 (46.6) | 73 (52.1) | |
Yes | 32 (31.1) | 34 (24.3) | |
Former smoker | 23 (22.3) | 33 (23.6) | |
Regular physical activity | 77 (74.8) | 98 (70.0) | 0.602 |
Waist circumference (cm) | 90.7 ± 13.4 | 87.0 ± 12.1 | 0.075 |
Systolic blood pressure (mmHg) | 131.0 ± 18.4 | 123.2 ± 16.1 | 0.005 |
Diastolic blood pressure (mmHg) | 73.8 ± 9.3 | 74.2 ± 9.6 | 0.846 |
BMI (kg/m2) | 26.2 ± 4.3 | 25.3 ± 4.0 | 0.111 |
Hypertension | 40 (38.8) | 20 (14.3) | <0.001 |
Dyslipidemia | 49 (47.6) | 49 (35.0) | 0.107 |
Diabetes duration (years) | 26.5 ± 9.9 | 17.9 ± 9.1 | <0.001 |
HbA1c (%) | 7.9 ± 1.1 | 7.4 ± 0.8 | <0.001 |
HbA1c (mmol/mol) | 63.0 ± 11.9 | 56.9 ± 8.3 | <0.001 |
Total cholesterol (mg/dL) | 179.0 ± 30.8 | 182.3 ± 27.1 | 0.602 |
HDL cholesterol (mg/dL) | 61.9 ± 16.8 | 66.8 ± 14.9 | 0.045 |
LDL cholesterol (mg/dL) | 102.7 ± 25.5 | 102.2 ± 22.7 | 0.993 |
TG (mg/dL) | 81.4 ± 49.9 | 68.7 ± 26.7 | 0.045 |
Daily Nutrient Intake 1 | DR (n = 103) | No DR (n = 140) | p2 |
---|---|---|---|
Energy intake (kcal) | 2047.0 ± 556.0 | 2077.7 ± 482.3 | 0.796 |
Carbohydrate (g) | 198.0 ± 36.3 | 186.6 ± 31.2 | 0.075 |
Complex carbohydrate (g) | 91.6 ± 18.6 | 85.8 ± 18.1 | 0.096 |
Sugar (g) | 82.0 ± 24.3 | 78.9 ± 23.1 | 0.604 |
Fiber (g) | 23.4 ± 5.8 | 22.4 ± 6.2 | 0.545 |
Soluble fiber (g) | 3.6 ± 1.3 | 3.5 ± 1.2 | 0.604 |
Insoluble fiber (g) | 13.6 ± 4.4 | 12.9 ± 4.1 | 0.545 |
Glycemic index (%) | 87.0 ± 18.1 | 81.1 ± 15.8 | 0.075 |
Protein (g) | 98.7 ± 16.0 | 97.0 ± 14.0 | 0.604 |
Total fat (g) | 98.9 ± 16.3 | 105.8 ± 13.9 | 0.036 |
SFAs (g) | 25.4 ± 5.1 | 26.8 ± 4.4 | 0.193 |
MUFAs (g) | 50.2 ± 11.2 | 54.3 ± 9.9 | 0.050 |
PUFAs (g) | 16.5 ± 4.1 | 17.8 ± 5.7 | 0.193 |
Omega 3 (g) | 1.6 ± 0.4 | 1.7 ± 0.4 | 0.263 |
Omega 6 (g) | 14.8 ± 4.1 | 16.0 ± 5.8 | 0.214 |
Trans fat (g) | 1.0 ± 0.5 | 1.0 ± 0.5 | 0.864 |
Cholesterol (mg) | 290.0 ± 75.4 | 287.7 ± 66.6 | 0.834 |
Palmitic acid (g) | 15.7 ± 2.7 | 16.5 ± 2.2 | 0.090 |
Stearic acid (g) | 5.9 ± 1.2 | 6.1 ± 1.1 | 0.545 |
Oleic acid (g) | 47.7 ± 11.0 | 51.7 ± 9.7 | 0.050 |
Linoleic acid (g) | 14.7 ± 4.1 | 15.9 ± 5.8 | 0.214 |
α-Linolenic acid (g) | 1.1 ± 0.2 | 1.2 ± 0.2 | 0.214 |
Arachidonic acid (g) | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.604 |
EPA (g) | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.604 |
DHA (g) | 0.3 ± 0.2 | 0.3 ± 0.2 | 0.604 |
Alcohol (g) | 6.5 ± 11.6 | 5.6 ± 9.2 | 0.686 |
Caffeine (g) | 244.0 ± 196.0 | 275.4 ± 233.9 | 0.601 |
Water (g) | 2962.0 ± 720.0 | 2883.5 ± 676.8 | 0.604 |
Vitamin A (µg) | 1283.0 ± 671.0 | 1212.1 ± 705.7 | 0.604 |
Retinol (µg) | 355.0 ± 464.0 | 346.9 ± 374.3 | 0.887 |
Carotene (µg) | 900.0 ± 436.0 | 841.6 ± 547.1 | 0.604 |
α Carotene (µg) | 703.0 ± 535.0 | 610.2 ± 581.2 | 0.545 |
β Carotene (µg) | 4868.0 ± 2 324.0 | 4578.6 ± 2 957.4 | 0.604 |
B Cryptoxanthin (µg) | 332.0 ± 222.0 | 302.0 ± 190.4 | 0.602 |
Lutein+zeoxanthin (µg) | 4147.0 ± 2 479.0 | 3951.2 ± 360.3 | 0.796 |
Lycopene (µg) | 4457.0 ± 2 096.0 | 4292.6 ± 2 065.8 | 0.658 |
Folate (µg) | 292.0 ± 73.0 | 283.7 ± 81.7 | 0.604 |
Vitamin B12 (mg) | 8.3 ± 3.8 | 8.5 ± 3.5 | 0.796 |
Vitamin B6 (mg) | 1.9 ± 0.5 | 1.9 ± 0.5 | 0.802 |
Vitamin C (mg) | 116.0 ± 62.4 | 112.3 ± 55.6 | 0.796 |
Vitamin D (mg) | 4.3 ± 1.7 | 4.4 ± 1.6 | 0.828 |
Vitamin E (mg) | 13.9 ± 2.9 | 15.2 ± 3.6 | 0.050 |
Thiamine (mg) | 1.6 ± 0.2 | 1.5 ± 0.3 | 0.075 |
Riboflavin (mg) | 2.3 ± 0.5 | 2.2 ± 0.5 | 0.796 |
Niacin (mg) | 27.9 ± 6.0 | 27.8 ± 6.3 | 0.860 |
Niacin equivalents (mg) | 44.0 ± 8.0 | 43.6 ± 7.8 | 0.796 |
Calcium (mg) | 1115.0 ± 329.0 | 1108.2 ± 317.7 | 0.887 |
Iron (mg) | 13.1 ± 2.2 | 13.0 ± 2.8 | 0.796 |
Sodium (mg) | 3381.0 ± 520.0 | 3449.8 ± 579.7 | 0.604 |
Potassium (mg) | 3491.0 ± 695.0 | 3332.5 ± 652.4 | 0.262 |
Magnesium (mg) | 415.0 ± 77.4 | 405.4 ± 84.4 | 0.604 |
Zinc (mg) | 11.7 ± 1.7 | 11.4 ± 1.5 | 0.561 |
Selenium (µg) | 145.0 ± 26.6 | 142.1 ± 24.0 | 0.604 |
Characteristics | DR (n = 103) | No DR (n = 140) | OR [95% CI] 1 | p |
---|---|---|---|---|
Sex (male) | 48 (46.6) | 62 (44.3) | 1.10 [0.66;1.83] | 0.722 |
Completed primary | 36 (36.0) | 34 (25.2) | 1.75 [1.00; 3.09] | 0.052 |
Secondary high school | 39 (40.2) | 49 (36.3) | 1.17 [0.69; 1.99] | 0.545 |
Graduate or higher | 18 (18.6) | 44 (32.6) | 0.47 [0.25; 0.88] | 0.018 |
Smoker, current | 32 (31.1) | 34 (24.3) | 1.35 [0.76; 2.38] | 0.241 |
Smoker, former | 23 (22.3) | 33 (23.6) | 0.95 [0.52; 1.73] | 0.820 |
Site Lleida | 51 (49.5) | 55 (39.3) | 1.60 [0.96; 2.67] | 0.113 |
Physical activity | 77 (74.8) | 98 (70.0) | 1.27 [0.72; 2.27] | 0.420 |
Age (years) | 46.2 ± 10.8 | 42.1 ± 10.3 | 1.04 [1.01; 1.06] | 0.004 |
BMI (kg/m2) | 26.2 ± 4.3 | 25.3 ± 4.0 | 1.06 [0.99; 1.13] | 0.073 |
Dyslipidemia | 49 (47.6) | 49 (35.0) | 1.68 [1.00; 2.84] | 0.050 |
Hypertension | 40 (38.8) | 20 (14.3) | 3.77 [2.05; 7.13] | <0.001 |
Diabetes duration (years) | 26.5 ± 9.9 | 17.9 ± 9.1 | 1.10 [1.07; 1.14] | <0.001 |
HbA1c (%) | 7.9 ± 1.1 | 7.4 ± 0.8 | 1.97 [1.44; 2.69] | 0.001 |
Nutrients | DR (n = 103) | No DR (n = 140) | Crude OR [95% CI] | Crude p | Adjusted OR [95% CI] 1 | Adjusted p 1 |
---|---|---|---|---|---|---|
Carbohydrate (g) | 198.0 ± 36.3 | 186.6 ± 31.2 | 1.01 [1.00; 1.02] | 0.127 | 1.01 [0.99; 1.01] | 0.127 |
Complex carbohydrate (g) | 91.6 ± 18.6 | 85.8 ± 18.1 | 1.02 [1.00; 1.04] | 0.031 | 1.02 [1.00; 1.04] | 0.031 |
Glycemic index (%) | 87.0 ± 18.1 | 81.1 ± 15.8 | 1.02 [1.00; 1.04] | 0.087 | 1.02 [0.99; 1.04] | 0.087 |
Total fat (g) | 98.9 ± 16.3 | 105.8 ± 13.9 | 0.97 [0.94; 0.99] | 0.009 | 0.96 [0.94; 0.98] | 0.009 |
SFAs (g) | 25.4 ± 5.1 | 26.8 ± 4.4 | 0.96 [0.90; 1.03] | 0.290 | 0.97 [0.91; 1.03] | 0.290 |
MUFAs (g) | 50.2 ± 11.2 | 54.3 ± 9.9 | 0.96 [0.92; 0.99] | 0.012 | 0.95 [0.92; 0.99] | 0.012 |
Palmitic acid (g) | 15.7 ± 2.7 | 16.5 ± 2.2 | 0.90 [0.78; 1.03] | 0.126 | 0.89 [0.78; 1.02] | 0.126 |
Oleic acid (g) | 47.7 ± 11.0 | 51.7 ± 9.7 | 0.96 [0.92; 0.99] | 0.012 | 0.95 [0.92; 0.99] | 0.012 |
α-Linolenic acid (g) | 1.1 ± 0.2 | 1.2 ± 0.2 | 0.16 [0.02; 1.23] | 0.077 | 0.16 [0.02; 1.23] | 0.077 |
Vitamin E (mg) | 13.9 ± 2.9 | 15.2 ± 3.6 | 0.86 [0.77; 0.96] | 0.006 | 0.85 [0.77; 0.95] | 0.006 |
Thiamine (mg) | 1.6 ± 0.2 | 1.5 ± 0.3 | 3.70 [0.86; 15.84] | 0.078 | 3.70 [0.86; 15.84] | 0.078 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granado-Casas, M.; Ramírez-Morros, A.; Martín, M.; Real, J.; Alonso, N.; Valldeperas, X.; Traveset, A.; Rubinat, E.; Alcubierre, N.; Hernández, M.; et al. Type 1 Diabetic Subjects with Diabetic Retinopathy Show an Unfavorable Pattern of Fat Intake. Nutrients 2018, 10, 1184. https://doi.org/10.3390/nu10091184
Granado-Casas M, Ramírez-Morros A, Martín M, Real J, Alonso N, Valldeperas X, Traveset A, Rubinat E, Alcubierre N, Hernández M, et al. Type 1 Diabetic Subjects with Diabetic Retinopathy Show an Unfavorable Pattern of Fat Intake. Nutrients. 2018; 10(9):1184. https://doi.org/10.3390/nu10091184
Chicago/Turabian StyleGranado-Casas, Minerva, Anna Ramírez-Morros, Mariona Martín, Jordi Real, Núria Alonso, Xavier Valldeperas, Alicia Traveset, Esther Rubinat, Nuria Alcubierre, Marta Hernández, and et al. 2018. "Type 1 Diabetic Subjects with Diabetic Retinopathy Show an Unfavorable Pattern of Fat Intake" Nutrients 10, no. 9: 1184. https://doi.org/10.3390/nu10091184
APA StyleGranado-Casas, M., Ramírez-Morros, A., Martín, M., Real, J., Alonso, N., Valldeperas, X., Traveset, A., Rubinat, E., Alcubierre, N., Hernández, M., Puig-Domingo, M., Lecube, A., Castelblanco, E., & Mauricio, D. (2018). Type 1 Diabetic Subjects with Diabetic Retinopathy Show an Unfavorable Pattern of Fat Intake. Nutrients, 10(9), 1184. https://doi.org/10.3390/nu10091184