Omega-3 Fatty Acid Supplementation and Cardiovascular Disease Risk: Glass Half Full or Time to Nail the Coffin Shut?
Abstract
:1. Introduction
2. Results from Recent Omega-3 Meta-Analyses
3. Summary of Meta-Analysis Findings by Type of CV Outcome
3.1. Stroke and Cardiovascular (CV) Events
3.2. Coronary Heart Disease (CHD) Events
3.3. Coronary Heart Disease (CHD), Coronary or Cardiac Death
4. Mechanisms through Which Long-Chain n-3 Polyunsaturated Fatty Acids (PUFAs) Could Potentially Lower Cardiovascular Disease (CVD) Risk
5. Limitations of the Current Randomized Controlled Trial (RCT) Evidence Base
6. Low Dosages and Lack of n-3 Polyunsaturated Fatty Acid (PUFA) Status Determination before and during Supplementation
7. Lack of a Clear Pathophysiologic Hypothesis in Most Trials
8. Ongoing and Recently Completed Randomized Controlled Trials (RCTs) of Long-Chain n-3 Polyunsaturated Fatty Acid (PUFA) Interventions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zárate, R.; El Jaber-Vazdekis, N.; Tejera, N.; Perez, J.A.; Rodriquez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Plourde, M.; Cunnane, S.C. Extremely limited synthesis of long chain polyunsaturates in adults: Implications for their dietary essentiality and use as supplements. Appl. Physiol. Nutr. Metab. 2007, 32, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Fleming, J.A. Emerging nutrition science on fatty acids and cardiovascular disease Nutritionists’ Perspectives. Adv. Nutr. 2015, 6, 326S–337S. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. Dietary Guidelines for Americans 2015–2020, 8th ed.December 2015. Available online: http://health.gov.dietary guidelines/2015/guidelines/ (accessed on 19 June 2018).
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djoussé, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaffarian, D.; Siscovick, D.S.; Lichtenstein, A.H.; American Heart Association Nutrition Committee on the Council on Lifestyle and Cardiometabolic Health; et al. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: A science advisory from the American Heart Association. Circulation 2018. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Rains, T.M. Stearidonic acid raises red blood cell membrane eicosapentaenoic acid. J. Nutr. 2012, 142, 626S–629S. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, Y.; Brooks, J.; Reider, C.; Fulgoni, V.L., 3rd. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: Results of an analysis using observational data from NHANES 2003–2008. Nutr. J. 2014, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet 1999, 354, 447–455. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Prineas, R.J.; Stein, P.K.; Siscovick, D.S. Dietary fish and n-3 fatty acid intake and cardiac electrocardiographic parameters in humans. J. Am. Coll. Cardiol. 2006, 38, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Abdelhamid, A.; Ajabnoor, S.; Brainard, J.; Brown, T.; Hanson, S.; Thorpe, G.; Jimoh, O.F.; Biswas, P.; Wang, X.; World Health Organization; et al. Set of Systematic Reviews of RCTs on the Health Effects of Omega 3 Polyunsaturated Fats in Adults. Available online: http://www.iffo.net/system/files/WHO%20NUGAG_RCTs_report%20abridged%20Aug%202017.pdf (accessed on 23 May 2018).
- Bhatt, D.L.; Steg, P.G.; Brinton, E.A.; Jacobson, T.A.; Miller, M.; Tardif, J.C.; Ketchum, S.B.; Doyle, R.T., Jr.; Murphy, S.A.; Soni, P.N.; et al. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial. Clin. Cardiol. 2017, 40, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIH. U.S. National Library of Medicine. ClinicalTrials.gov. Outcomes Study to Assess Statin Residual Risk Reduction with Epanova in High CV Risk Patients with Hypertriglyceridemia (STRENGTH). NCT02104817. Available online: https://clinicaltrials.gov/ct2/show/NCT02104817 (accessed on 24 May 2018).
- Bassuk, S.S.; Manson, J.E.; Lee, I.M.; Cook, N.R.; Christen, W.G.; Bubes, V.Y.; Gordon, D.S.; Copeland, T.; Friedenberg, G.; D’Agostino, D.M.; et al. Baseline characteristics of participants in the Vitamin D and omega-3 Trial (VITAL). Contemp. Clin. Trials 2016, 47, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Bowman, L.; Mafham, M.; Stevens, W.; Haynes, R.; Aung, T.; Chen, F.; Buck, G.; Collins, R.; Armitage, J.; ASCEND Study Collaborative Group. ASCEND: A Study of Cardiovascular Events in Diabetes: Characteristics of a randomized trial of aspirin and of omega-3 fatty acid supplementation in 15, 480 people with diabetes. Am. Heart J. 2018, 198, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.D.; Miller, P.E.; Van Elswyk, M.E.; Kuratko, C.N.; Bylsma, L.C. A meta-analysis of randomized controlled trials and prospective cohort studies of eicosapentaenoic and docosahexaenoic long-chain omega-3 fatty acids and coronary heart disease risk. Mayo Clin. Proc. 2017, 92, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Palacios, O.M.; Bell, M.; Toth, P.P. Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: An updated meta-analysis and review of research gaps. J. Clin. Lipidol. 2017, 11, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: Meta-analysis of 10 trials involving 77,917 individuals. JAMA Cardiol. 2018, 3, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Siscovick, D.S.; Barringer, T.A.; Fretts, A.M.; Wu, J.H.; Lichtenstein, A.H.; Costello, R.B.; Kris-Etherton, P.M.; Jacobson, T.A.; Engler, M.B.; Alger, H.M.; et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: A science advisory from the American Heart Association. Circulation 2017, 135, e867–e884. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, J. Another nail in the coffin for fish oil supplements. JAMA 2018, 291, 1851–1852. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.Y.; Mozaffarian, D. Omega-3 fatty acids, atherosclerosis progression and cardiovascular outcomes in recent trials: New pieces in a complex puzzle. Heart 2014, 100, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Balk, E.M.; Lichtenstein, A.H. Omega-3 fatty acids and cardiovascular disease: Summary of the 2016 Agency of Healthcare Research and Quality Evidence Review. Nutrients 2017, 9, 865. [Google Scholar] [CrossRef] [PubMed]
- Musa-Veloso, K.; Binns, M.A.; Kocenas, A.C.; Poon, T.; Elliot, J.A.; Rice, H.; Oppedal-Olsen, H.; Lloyd, H.; Lemke, S. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid dose-dependently reduce fasting serum triglycerides. Nutr. Rev. 2010, 68, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Treatment Trialists’ (CTT) Collaborators; Mihaylova, B.; Emberson, J.; Blackwell, L.; Keech, A.; Simes, K.; Barnes, E.H.; Voysey, M.; Gray, A.; Collins, R.; et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of data from 27 randomised trials. Lancet 2012, 380, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Tintle, N.L.; Etherton, M.R.; Vasan, R.S. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incidence cardiovascular disease: The Framingham Heart Study. J. Clin. Lipidol. 2018, 12, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Lemaitre, R.N.; King, I.B.; Song, X.; Huang, H.; Sacks, F.M.; Rimm, E.B.; Wang, M.; Siscovick, D.S. Plasma phospholipid long-chain omega-3 fatty acids and total and cause-specific mortality in older adults: The Cardiovascular Health Study. Ann. Intern. Med. 2013, 158, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Lemaitre, R.N.; King, I.N.; Song, X.; Spiegelman, D.; Sacks, F.M.; Rimm, E.B.; Siscovick, D.S. Circulating long-chain omega-3 fatty acids and incidence of congestive heart failure in older adults: The Cardiovascular Health Study. Ann. Intern. Med. 2011, 155, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Del Gobbo, L.C.; Imamura, F.; Aslibekyan, S.; Marklund, M.; Virtanen, J.K.; Wennberg, M.; Yakoob, M.Y.; Chiuve, S.E.; Dela Cruz, L.; Frazier-Wood, A.C.; et al. n-3 polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies. JAMA Intern. Med. 2016, 176, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- West, A.L.; Kindberg, G.M.; Hustvedt, S.O.; Calder, P.C. A novel self-micro-emulsifying delivery system enhances enrichment of eicosapentaenoic acid and docosahexaenoic acid after single and repeated dosings in healthy adults in a randomized trial. J. Nutr. 2018, in press. [Google Scholar]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- French, B.A.; Kramer, C.M. Mechanisms of post-infarct left ventricular remodeling. Drug Discov. Today Dis. Mech. 2007, 4, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Westman, P.C.; Lipinski, M.J.; Luger, D.; Waksman, R.; Bonow, R.O.; Wu, E.; Epstein, S.E. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 2016, 67, 2050–2060. [Google Scholar] [CrossRef] [PubMed]
- Herzog, C.A.; Shroff, G.R. Atherosclerotic versus nonatherosclerotic evaluation. The yin and yang of cardiovascular imaging in advanced chronic kidney disease. JACC Cardiovasc. Imaging 2014, 7, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Dominic, E.A.; Fink, J.C.; Ojo, A.O.; Barrows, I.R.; Reilly, M.P.; Townsend, R.R.; Joffe, M.M.; Rosas, S.E.; Wolman, M.; et al. Association between inflammation and cardiac geometry in chronic kidney disease: Findings from the CRIC study. PLoS ONE 2015, 10, e0124772. [Google Scholar] [CrossRef] [PubMed]
- Heydari, B.; Abdullah, S.; Pottala, J.V.; Shah, R.; Abbasi, S.; Mandry, D.; Francis, S.A.; Lumish, H.; Ghoshhajara, B.B.; Hoffmann, U.; et al. Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction: The OMEGA-REMODEL randomized clinical trial. Circulation 2016, 134, 378–391. [Google Scholar] [CrossRef] [PubMed]
- St John Sutton, M.; Lee, D.; Rouleau, J.L.; Goldman, S.; Plappert, T.; Braunwald, E.; Pfeffer, M.A. Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation 2003, 107, 2577–2582. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 2008, 358, 2148–2159. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Guyton, J.R.; Orringer, C.E.; Hamilton-Craig, I.; Alexander, D.D.; Davidson, M.H. Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia. J. Clin. Lipidol. 2016, 10, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Ghasemifard, S.; Turchini, G.M.; Sinclair, A.J. Omega-3 long-chain fatty acid “bioavailability”: A review of evidence and methodological considerations. Prog. Lipid Res. 2014, 56, 92–108. [Google Scholar] [CrossRef] [PubMed]
Meta-Analysis Reference | Trials Included (n) | Subjects Included (n) | Outcomes Evaluated | Pooled Effect Size (Risk Ratio, 95% CI) |
---|---|---|---|---|
Alexander, et al. [16] | 18 | 93,633 | CHD event (combination of fatal or nonfatal MI, coronary death, sudden cardiac death, angina) | 0.94 (0.85–1.05) |
5 | 41,350 | Coronary death (fatal MI, death from other acute or subacute forms of CHD, or death from chronic CHD) | 0.81 (0.65–1.00) * | |
Maki, et al. [17] | 14 | 71,899 | Cardiac death (death from CHD, cardiac arrhythmia, or heart failure) | 0.92 (0.86–0.98) * |
Hooper, et al. [11] | 25 | 67,772 | CV death (death from any CV cause; death from individual CV causes were summed if no report of CV death; cardiac death used if CV death not reported) | 0.95 (0.87–1.03) |
32 | 89,362 | CV event (non-fatal MI, CHD death, fatal and non-fatal stroke) 1 | 0.99 (0.94–1.04) | |
21 | 73,491 | CHD death (coronary death or, when not reported, ischemic heart disease death, fatal MI or cardiac death) | 0.93 (0.79–1.09) | |
28 | 84,301 | CHD event (CHD or coronary event, total MI, acute coronary syndrome or stable or unstable angina) | 0.93 (0.88–0.97) * | |
28 | 89,358 | Stroke (fatal and non-fatal stroke, hemorrhagic and ischemic) | 1.06 (0.96–1.16) | |
Aung, et al. [18] | 10 | 77,917 | CHD event (nonfatal MI, CHD death) | 0.96 (0.90–1.01) |
10 | 77,917 | Nonfatal MI | 0.97 (0.89–1.05) | |
10 | 77,917 | CHD death (sudden cardiac death, deaths due to ventricular arrhythmias and heart failure in patients with CHD, MI or deaths occurring after coronary revascularization or heart transplant) | 0.93 (0.85–1.00) * | |
10 | 77,917 | Stroke (ischemic, hemorrhagic, unclassified/other) | 1.03 (0.93–1.13) | |
10 | 77,917 | Major vascular event (composite of first occurrence of nonfatal MI or death caused by CHD, nonfatal or fatal stroke, any revascularization procedure) | 0.97 (0.93–1.01) |
Type of Event | Q1 | Q2 | Q3 | Q4 | Q5 | p for Trend |
---|---|---|---|---|---|---|
CV Death | 1.00 | 0.92 (0.72–1.19) | 1.05 (0.82–1.35) | 0.74 (0.56–0.98) | 0.65 (0.48–0.87) | <0.001 |
CHD Death | 1.00 | 0.88 (0.64–1.22) | 1.03 (0.75–1.41) | 0.62 (0.43–0.89) | 0.60 (0.42–0.87) | 0.002 |
Arrhythmic Deaths | 1.00 | 0.79 (0.50–1.24) | 1.07 (0.70–1.63) | 0.68 (0.42–1.10) | 0.52 (0.31–0.86) | 0.008 |
Stroke Death | 1.00 | 0.92 (0.53–1.58) | 1.11 (0.66–1.88) | 0.84 (0.48–1.48) | 0.60 (0.32–1.12) | 0.092 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maki, K.C.; Dicklin, M.R. Omega-3 Fatty Acid Supplementation and Cardiovascular Disease Risk: Glass Half Full or Time to Nail the Coffin Shut? Nutrients 2018, 10, 864. https://doi.org/10.3390/nu10070864
Maki KC, Dicklin MR. Omega-3 Fatty Acid Supplementation and Cardiovascular Disease Risk: Glass Half Full or Time to Nail the Coffin Shut? Nutrients. 2018; 10(7):864. https://doi.org/10.3390/nu10070864
Chicago/Turabian StyleMaki, Kevin C., and Mary R. Dicklin. 2018. "Omega-3 Fatty Acid Supplementation and Cardiovascular Disease Risk: Glass Half Full or Time to Nail the Coffin Shut?" Nutrients 10, no. 7: 864. https://doi.org/10.3390/nu10070864
APA StyleMaki, K. C., & Dicklin, M. R. (2018). Omega-3 Fatty Acid Supplementation and Cardiovascular Disease Risk: Glass Half Full or Time to Nail the Coffin Shut? Nutrients, 10(7), 864. https://doi.org/10.3390/nu10070864