Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease
Abstract
:1. Introduction
2. Dietary Cholesterol Food Sources
3. Cholesterol Homeostasis
4. Dietary Cholesterol and Cardiovascular Disease (CVD) Risk
4.1. Animal Models Studies
4.2. Human Studies
4.2.1. Observational Studies
4.2.2. Randomized Controlled Trial Studies
5. Dietary Cholesterol, Saturated Fat, Trans Fatty Acids, and Cardiovascular Disease
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention, and National Center for Health Statistics. Underlying Cause of Death 1999–2016 on CDC WONDER Online Database, Released 2017. Data Are from the Multiple Cause of Death Files, 1999–2016, as Compiled from Data Provided by the 57 Vital Statistics Jurisdictions through the Vital Statistics Cooperative Program. Available online: https://wonder.cdc.gov/wonder/help/ucd.html (accessed on 11 May 2018).
- Ahmed, S.; Gul, S.; Zia-ul-Haq, M.; Riaz, M. Hypolipidemic effects of nimesulide and celecoxib in experimentally induced hypercholesterolemia in rabbits. Turk. J. Med. Sci. 2015, 45, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Espinola-Klein, C.; Gori, T.; Blankenberg, S.; Munzel, T. Inflammatory markers and cardiovascular risk in the metabolic syndrome. Front. Biosci. (Landmark Ed.) 2011, 16, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Dietschy, J.M.; Siperstein, M.D. Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J. Lipid Res. 1967, 8, 97–104. [Google Scholar] [PubMed]
- Wilson, J.D.; Lindsey, C.A.; Dietschy, J.M. Influence of dietary cholesterol on cholesterol metabolism. Ann. N. Y. Acad. Sci. 1968, 149, 808–821. [Google Scholar] [CrossRef] [PubMed]
- Association, A.H. Diet and Heart Disease; American Heart Association: Dallas, TX, USA, 1968. [Google Scholar]
- Hu, Y.W.; Zheng, L.; Wang, Q. Regulation of cholesterol homeostasis by liver X receptors. Clin. Chim. Acta 2010, 411, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.C.; Fernandez, M.L.; McNamara, D.J. Dietary fat type and cholesterol quantity interact to affect cholesterol metabolism in guinea pigs. J. Nutr. 1992, 122, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
- Top Food Sources of Cholesterol among U.S Population, 2005–2006 NHANES. Available online: https://epi.grants.cancer.gov/diet/foodsources/cholesterol/table1.html (accessed on 10 May 2018).
- Djousse, L.; Gaziano, J.M. Egg consumption in relation to cardiovascular disease and mortality: The Physicians’ Health Study. Am. J. Clin. Nutr. 2008, 87, 964–969. [Google Scholar] [CrossRef] [PubMed]
- McGill, H.C., Jr. The relationship of dietary cholesterol to serum cholesterol concentration and to atherosclerosis in man. Am. J. Clin. Nutr. 1979, 32 (Suppl. 12), 2664–2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.W.; Chung, K.C. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Manson, J.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef] [PubMed]
- USDA. United States Department of Agriculture National Nutrient Database for Standard Reference 1 April 2018 Software v.3.9.4 2018-05-02. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 10 May 2018).
- Clayton, Z.S.; Fusco, E.; Kern, M. Egg consumption and heart health: A review. Nutrition 2017, 37, 79–85. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.J. The Fifty Year Rehabilitation of the Egg. Nutrients 2015, 7, 8716–8722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeisel, S.H. The fetal origins of memory: The role of dietary choline in optimal brain development. J. Pediatr. 2006, 149 (Suppl. 5), S131–S136. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, K.A.; Niculescu, M.D.; Craciunescu, C.N.; Fischer, L.M.; Zeisel, S.H. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am. J. Clin. Nutr. 2006, 84, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, K.A.; Kozyreva, O.G.; Song, J.; Galanko, J.A.; Fischer, L.M.; Zeisel, S.H. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J. 2006, 20, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H.; Niculescu, M.D. Perinatal choline influences brain structure and function. Nutr. Rev. 2006, 64, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.; Zeisel, S.H.; Jacques, P.; Selhub, J.; Dougherty, L.; Colditz, G.A.; Willett, W.C. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am. J. Clin. Nutr. 2006, 83, 905–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niculescu, M.D.; Craciunescu, C.N.; Zeisel, S.H. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006, 20, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapira, N. Modified egg as a nutritional supplement during peak brain development: A new target for fortification. Nutr. Health 2009, 20, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Leermakers, E.T.; Moreira, E.M.; Kiefte-de Jong, J.C.; Darweesh, S.K.; Visser, T.; Voortman, T.; Bautista, P.K.; Chowdhury, R.; Gorman, D.; Bramer, W.M.; et al. Effects of choline on health across the life course: A systematic review. Nutr. Rev. 2015, 73, 500–522. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C. Value of eggs during pregnancy and early childhood. Nurs. Stand. 2013, 27, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Finnell, R.H.; Blom, H.J.; Carmichael, S.L.; Vollset, S.E.; Yang, W.; Ueland, P.M. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology 2009, 20, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Carmichael, S.L.; Yang, W.; Selvin, S.; Schaffer, D.M. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am. J. Epidemiol. 2004, 160, 102–109. [Google Scholar] [CrossRef] [PubMed]
- USDA National Nutrient Database for Standard Reference 1 April 2018 Software v.3.9.4 2018-05-02 AM. 2018, Whole Egg, Raw. Available online: https://ndb.nal.usda.gov/ndb/foods/show/01123 (accessed on 2 June 2018).
- Jacobson, K.; Mouritsen, O.G.; Anderson, R.G. Lipid rafts: At a crossroad between cell biology and physics. Nat. Cell Biol. 2007, 9, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Poian, A.T.D.; Castanho, M.A.R.B. Integrative Human Biochemistry: A Textbook for Medical Biochemistry; Springer: New York, NY, USA, 2015. [Google Scholar]
- Harvey, R.A.; Ferrier, D. (Eds.) Biochemistry, Lippincott Illustrated Reviews, 5th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Jones, P.J. Dietary cholesterol and the risk of cardiovascular disease in patients: A review of the Harvard Egg Study and other data. Int. J. Clin. Pract. 2009, 63, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fakheri, R.J.; Javitt, N.B. Autoregulation of cholesterol synthesis: Physiologic and pathophysiologic consequences. Steroids 2011, 76, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.; Kimmel, R.; Stroup, D. Regulation of cholesterol 7α-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRα). Gene 2001, 262, 257–265. [Google Scholar] [CrossRef]
- Ahlberg, C.M.; Schiermiester, L.N.; Howard, T.J.; Calkins, C.R.; Spangler, M.L. Genome wide association study of cholesterol and poly- and monounsaturated fatty acids, protein, and mineral content of beef from crossbred cattle. Meat Sci. 2014, 98, 804–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calkin, A.C.; Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Boil. 2012, 13, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, J.Y.L.; Ferrell, J.M. Bile Acid Metabolism in Liver Pathobiology. Gene Expr. 2018, 18, 71–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Jiang, C.; Cheng, J.; Krausz, K.W.; Li, T.; Ferrell, J.M.; Gonzalez, F.J.; Chiang, J.Y. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim. Biophys. Acta 2015, 1851, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Cui, L.; Wang, A.; Wang, X.; Song, Q.; Li, S.; Shi, J.; Zhao, X.; Chen, S.; Du, X.; et al. Cumulative Exposure to Ideal Cardiovascular Health and Incident Diabetes in a Chinese Population: The Kailuan Study. J. Am. Heart Assoc. 2016, 5, e004132. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.C.; Fernandez, M.L.; Tosca, M.A.; McNamara, D.J. Regulation of hepatic LDL metabolism in the guinea pig by dietary fat and cholesterol. J. Lipid Res. 1994, 35, 446–457. [Google Scholar] [PubMed]
- Lin, E.C.; Fernandez, M.L.; McNamara, D.J. High density lipoprotein metabolism is altered by dietary cholesterol but not fat saturation in guinea pigs. Atherosclerosis 1995, 112, 161–175. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Lin, E.C.; Trejo, A.; McNamara, D.J. Prickly pear (Opuntia sp.) pectin reverses low density lipoprotein receptor suppression induced by a hypercholesterolemic diet in guinea pigs. J. Nutr. 1992, 122, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.J.; Kolb, R.; Parker, T.S.; Batwin, H.; Samuel, P.; Brown, C.D.; Ahrens, E.H., Jr. Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity. J. Clin. Investig. 1987, 79, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Finking, G.; Hanke, H. Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis 1997, 135, 1–7. [Google Scholar] [CrossRef]
- Ando, M.; Tomoyori, H.; Imaizumi, K. Dietary cholesterol-oxidation products accumulate in serum and liver in apolipoprotein E-deficient mice, but do not accelerate atherosclerosis. Br. J. Nutr. 2002, 88, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannel, W.B.; Castelli, W.P.; Gordon, T.; McNamara, P.M. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann. Intern. Med. 1971, 74, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dawber, T.R.; Nickerson, R.J.; Brand, F.N.; Pool, J. Eggs, serum cholesterol, and coronary heart disease. Am. J. Clin. Nutr. 1982, 36, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snowdon, D.A. Animal product consumption and mortality because of all causes combined, coronary heart disease, stroke, diabetes, and cancer in Seventh-day Adventists. Am. J. Clin. Nutr. 1988, 48 (Suppl. 3), 739–748. [Google Scholar] [CrossRef] [PubMed]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2017, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kritchevsky, S.B.; Kritchevsky, D. Egg consumption and coronary heart disease: An epidemiologic overview. J. Am. Coll. Nutr. 2000, 19 (Suppl. 5), 549S–555S. [Google Scholar] [CrossRef] [PubMed]
- Kritchevsky, S.B. A review of scientific research and recommendations regarding eggs. J. Am. Coll. Nutr. 2004, 23 (Suppl. 6), 596S–600S. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lam, T.H.; Jiang, C.Q.; Zhang, W.S.; Zhu, F.; Jin, Y.L.; Woo, J.; Cheng, K.K.; Thomas, G.N. Egg consumption and the risk of cardiovascular disease and all-cause mortality: Guangzhou Biobank Cohort Study and meta-analyses. Eur. J. Nutr. 2018, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.B.; Manson, J.E.; Ascherio, A.; Colditz, G.A.; Rosner, B.A.; Spiegelman, D.; Speizer, F.E.; Sacks, F.M.; et al. A prospective study of egg consumption and risk of cardiovascular disease in men and women. JAMA 1999, 281, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Geiker, N.R.W.; Larsen, M.L.; Dyerberg, J.; Stender, S.; Astrup, A. Egg consumption, cardiovascular diseases and type 2 diabetes. Eur. J. Clin. Nutr. 2018, 72, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.L.; Barraj, L.M.; Heilman, J.M.; Scrafford, C.G. Egg consumption and cardiovascular disease among diabetic individuals: A systematic review of the literature. Diabetes Metab. Syndr. Obes. 2014, 7, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Lee, H.W.; Kim, C.E.; Lim, J.; Lee, J.K.; Lee, S.A.; Kang, D. Egg Consumption and Risk of Metabolic Syndrome in Korean Adults: Results from the Health Examinees Study. Nutrients 2017, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Jung, J.H.; Choi, S.W.; Lee, H.J. Association between Egg Consumption and Metabolic Disease. Korean J. Food Sci. Anim. Resour. 2018, 38, 209–223. [Google Scholar] [PubMed]
- Weggemans, R.M.; Zock, P.L.; Katan, M.B. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: A meta-analysis. Am. J. Clin. Nutr. 2001, 73, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Missimer, A.; DiMarco, D.M.; Andersen, C.J.; Murillo, A.G.; Vergara-Jimenez, M.; Fernandez, M.L. Consuming Two Eggs per Day, as Compared to an Oatmeal Breakfast, Decreases Plasma Ghrelin while Maintaining the LDL/HDL Ratio. Nutrients 2017, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Fuller, N.R.; Caterson, I.D.; Sainsbury, A.; Denyer, G.; Fong, M.; Gerofi, J.; Baqleh, K.; Williams, K.H.; Lau, N.S.; Markovic, T.P. The effect of a high-egg diet on cardiovascular risk factors in people with type 2 diabetes: The Diabetes and Egg (DIABEGG) study-a 3-mo randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Gnanaraj, J.; Treu, J.A.; Ma, Y.; Kavak, Y.; Njike, V.Y. Effects of egg ingestion on endothelial function in adults with coronary artery disease: A randomized, controlled, crossover trial. Am. Heart J. 2015, 169, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Van der Made, S.M.; Kelly, E.R.; Berendschot, T.T.; Kijlstra, A.; Lutjohann, D.; Plat, J. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. J. Nutr. 2014, 144, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Lemos, B.S.; Medina-Vera, I.; Blesso, C.N.; Fernandez, M.L. Intake of 3 Eggs per Day When Compared to a Choline Bitartrate Supplement, Downregulates Cholesterol Synthesis without Changing the LDL/HDL Ratio. Nutrients 2018, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Blesso, C.N.; Andersen, C.J.; Barona, J.; Volk, B.; Volek, J.S.; Fernandez, M.L. Effects of carbohydrate restriction and dietary cholesterol provided by eggs on clinical risk factors in metabolic syndrome. J. Clin. Lipidol. 2013, 7, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Mutungi, G.; Waters, D.; Ratliff, J.; Puglisi, M.; Clark, R.M.; Volek, J.S.; Fernandez, M.L. Eggs distinctly modulate plasma carotenoid and lipoprotein subclasses in adult men following a carbohydrate-restricted diet. J. Nutr. Biochem. 2010, 21, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Mutungi, G.; Ratliff, J.; Puglisi, M.; Torres-Gonzalez, M.; Vaishnav, U.; Leite, J.O.; Quann, E.; Volek, J.S.; Fernandez, M.L. Dietary cholesterol from eggs increases plasma HDL cholesterol in overweight men consuming a carbohydrate-restricted diet. J. Nutr. 2008, 138, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, J.C.; Mutungi, G.; Puglisi, M.J.; Volek, J.S.; Fernandez, M.L. Eggs modulate the inflammatory response to carbohydrate restricted diets in overweight men. Nutr. Metab. 2008, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, N.R.; Sainsbury, A.; Caterson, I.D.; Denyer, G.; Fong, M.; Gerofi, J.; Leung, C.; Lau, N.S.; Williams, K.H.; Januszewski, A.S.; et al. Effect of a high-egg diet on cardiometabolic risk factors in people with type 2 diabetes: The Diabetes and Egg (DIABEGG) Study-randomized weight-loss and follow-up phase. Am. J. Clin. Nutr. 2018, 107, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Raman, G.; Vishwanathan, R.; Jacques, P.F.; Johnson, E.J. Dietary cholesterol and cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2015, 102, 276–294. [Google Scholar] [CrossRef] [PubMed]
- Blesso, C.N.; Fernandez, M.L. Dietary Cholesterol, Serum Lipids, and Heart Disease: Are Eggs Working for or Against You? Nutrients 2018, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, M.J.; Gylling, H.; Miettinen, T.A. Responses of surrogate markers of cholesterol absorption and synthesis to changes in cholesterol metabolism during various amounts of fat and cholesterol feeding among healthy men. Br. J. Nutr. 2008, 99, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Bowman, M.P.; Van Doren, J.; Taper, L.J.; Thye, F.W.; Ritchey, S.J. Effect of dietary fat and cholesterol on plasma lipids and lipoprotein fractions in normolipidemic men. J. Nutr 1988, 118, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Clifton, P.M.; Kestin, M.; Abbey, M.; Drysdale, M.; Nestel, P.J. Relationship between sensitivity to dietary fat and dietary cholesterol. Arteriosclerosis 1990, 10, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Fielding, C.J.; Havel, R.J.; Todd, K.M.; Yeo, K.E.; Schloetter, M.C.; Weinberg, V.; Frost, P.H. Effects of dietary cholesterol and fat saturation on plasma lipoproteins in an ethnically diverse population of healthy young men. J. Clin. Investig. 1995, 95, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Chotivichien, S.; Arab, L.; Prasithsirikul, W.; Manosuthi, W.; Sinawat, S.; Detels, R. Effect of nutritional counseling on low-density lipoprotein cholesterol among Thai HIV-infected adults receiving antiretroviral therapy. AIDS Care 2016, 28, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Flaim, E.; Ferreri, L.F.; Thye, F.W.; Hill, J.E.; Ritchey, S.J. Plasma lipid and lipoprotein cholesterol concentrations in adult males consuming normal and high cholesterol diets under controlled conditions. Am. J. Clin. Nutr. 1981, 34, 1103–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, M.A.; Nolph, G.B.; Osio, Y.; Sun, G.Y.; Lanning, B.; Krause, G.; Dally, J.C. Serum lipids and eggs. J. Am. Diet. Assoc. 1986, 86, 1541–1548. [Google Scholar] [PubMed]
- Flynn, M.A.; Nolph, G.B.; Flynn, T.C.; Kahrs, R.; Krause, G. Effect of dietary egg on human serum cholesterol and triglycerides. Am. J. Clin. Nutr. 1979, 32, 1051–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsberg, H.N.; Karmally, W.; Siddiqui, M.; Holleran, S.; Tall, A.R.; Rumsey, S.C.; Deckelbaum, R.J.; Blaner, W.S.; Ramakrishnan, R. A dose-response study of the effects of dietary cholesterol on fasting and postprandial lipid and lipoprotein metabolism in healthy young men. Arterioscler. Thromb. Vasc. Biol. 1994, 14, 576–586. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Karmally, W.; Siddiqui, M.; Holleran, S.; Tall, A.R.; Blaner, W.S.; Ramakrishnan, R. Increases in dietary cholesterol are associated with modest increases in both LDL and HDL cholesterol in healthy young women. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.M.; Zern, T.L.; Wood, R.J.; Shrestha, S.; Aggarwal, D.; Sharman, M.J.; Volek, J.S.; Fernandez, M.L. Maintenance of the LDL cholesterol:HDL cholesterol ratio in an elderly population given a dietary cholesterol challenge. J. Nutr. 2005, 135, 2793–2798. [Google Scholar] [CrossRef] [PubMed]
- Herron, K.L.; Lofgren, I.E.; Sharman, M.; Volek, J.S.; Fernandez, M.L. High intake of cholesterol results in less atherogenic low-density lipoprotein particles in men and women independent of response classification. Metabolism 2004, 53, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Herron, K.L.; Fernandez, M.L. Are the current dietary guidelines regarding egg consumption appropriate? J. Nutr. 2004, 134, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Herron, K.L.; Vega-Lopez, S.; Conde, K.; Ramjiganesh, T.; Shachter, N.S.; Fernandez, M.L. Men classified as hypo- or hyperresponders to dietary cholesterol feeding exhibit differences in lipoprotein metabolism. J. Nutr. 2003, 133, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Herron, K.L.; Vega-Lopez, S.; Conde, K.; Ramjiganesh, T.; Roy, S.; Shachter, N.S.; Fernandez, M.L. Pre-menopausal women, classified as hypo- or hyperresponders, do not alter their LDL/HDL ratio following a high dietary cholesterol challenge. J. Am. Coll. Nutr. 2002, 21, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Greenland, P. Effects of exercise, dietary cholesterol, and dietary fat on blood lipids. Arch. Intern. Med. 1990, 150, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Kestin, M.; Clifton, P.M.; Rouse, I.L.; Nestel, P.J. Effect of dietary cholesterol in normolipidemic subjects is not modified by nature and amount of dietary fat. Am. J. Clin. Nutr. 1989, 50, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Quig, D.W.; Thye, F.W.; Ritchey, S.J.; Herbert, W.G.; Clevidence, B.A.; Reynolds, L.K.; Smith, M.C. Effects of short-term aerobic conditioning and high cholesterol feeding on plasma total and lipoprotein cholesterol levels in sedentary young men. Am. J. Clin. Nutr. 1983, 38, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reaven, G.M.; Abbasi, F.; Bernhart, S.; Coulston, A.; Darnell, B.; Dashti, N.; Kim, H.; Kulkarni, K.; Lamendola, C.; McLaughlin, T.; et al. Insulin resistance, dietary cholesterol, and cholesterol concentration in postmenopausal women. Metabolism 2001, 50, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, R. Increase in egg intake minimally affects blood cholesterol level. Poult. Advis. 1995, 28, 31–34. [Google Scholar]
- Duane, W.C. Effects of soybean protein and very low dietary cholesterol on serum lipids, biliary lipids, and fecal sterols in humans. Metabolism 1999, 48, 489–494. [Google Scholar] [CrossRef]
- Vorster, H.H.; Benade, A.J.; Barnard, H.C.; Locke, M.M.; Silvis, N.; Venter, C.S.; Smuts, C.M.; Engelbrecht, G.P.; Marais, M.P. Egg intake does not change plasma lipoprotein and coagulation profiles. Am. J. Clin. Nutr. 1992, 55, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Hu, F.B. Dairy Products, Dairy Fatty Acids, and the Prevention of Cardiometabolic Disease: A Review of Recent Evidence. Curr. Atheroscler. Rep. 2018, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Zheng, M.; Catterall, E.; Downs, S.; Thomas, B.; Veerman, L.; Barendregt, J.J. Contribution of Trans-Fatty Acid Intake to Coronary Heart Disease Burden in Australia: A Modelling Study. Nutrients 2017, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Wilczek, M.M.; Olszewski, R.; Krupienicz, A. Trans-Fatty Acids and Cardiovascular Disease: Urgent Need for Legislation. Cardiology 2017, 138, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B.; Mozaffarian, D.; Sotoodehnia, N.; Siscovick, D.S. Trans-fatty acids and sudden cardiac death. Atheroscler. Suppl. 2006, 7, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Aro, A.; Willett, W.C. Health effects of trans-fatty acids: Experimental and observational evidence. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 2), S5–S21. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Trans fatty acids—Effects on systemic inflammation and endothelial function. Atheroscler. Suppl. 2006, 7, 29–32. [Google Scholar] [CrossRef] [PubMed]
Food Item | Unit | One Egg a | Beef b | Cheese c | Chicken d | Butter e | Shrimp f | Two Eggs g |
---|---|---|---|---|---|---|---|---|
per | per | per | per | per | Per | per | ||
50 gm | 100 gm | 100 gm | 100 gm | 100 gm | 100 g | 100 gm | ||
Nutrients | ||||||||
Energy | kcal | 72 | 674 | 393 | 215 | 714 | 62 | 143 |
Protein | g | 6.28 | 8.21 | 25 | 18.6 | 12.56 | ||
Total lipid (fat) | g | 4.75 | 70.9 | 32.14 | 15.06 | 78.57 | 13.27 | 9.51 |
Carbohydrate, by difference | g | 0.36 | - | - | - | - | 0.88 | 0.72 |
Fiber, total dietary | g | - | - | - | - | - | 0 | |
Sugars, total | g | 0.18 | - | - | - | - | - | 0.37 |
Minerals | ||||||||
Calcium, Ca | mg | 28 | 26 | 714 | 11 | - | 53 | 56 |
Iron, Fe | mg | 0.88 | 0.72 | - | 0.9 | - | 0.32 | 1.75 |
Magnesium, Mg | mg | 6 | 5 | - | 20 | - | - | 12 |
Phosphorus, P | mg | 99 | 61 | - | 147 | - | - | 198 |
Potassium, K | mg | 69 | 96 | - | 189 | - | - | 138 |
Sodium, Na | mg | 71 | 26 | 607 | 70 | - | 566 | 142 |
Zinc, Zn | mg | 0.65 | 0.82 | - | 1.31 | - | - | 1.29 |
Copper, Cu | mg | 0.04 | 0.03 | - | 0.048 | - | - | 0.072 |
Manganese, Mn | mg | 0.01 | - | - | 0.019 | - | - | 0.028 |
Selenium, Se | µg | 15.3 | 6.6 | - | 14.4 | - | - | 30.7 |
Fluoride, F | µg | 0.6 | - | - | - | - | - | 1.1 |
Vitamins | ||||||||
Vitamin C, total | mg | - | - | - | 1.6 | - | - | - |
Thiamin | mg | 0.02 | 0.03 | - | 0.06 | - | - | 0.04 |
Riboflavin | mg | 0.23 | 0.04 | - | 0.12 | - | - | 0.457 |
Niacin | mg | 0.04 | 1.44 | - | 6.801 | - | - | 0.075 |
Pantothenic acid | mg | 0.77 | 0.16 | - | 0.91 | - | - | 1.533 |
Vitamin B-6 | mg | 0.09 | 0.11 | - | 0.35 | - | - | 0.17 |
Folate, total | µg | 24 | - | - | 6 | - | - | 47 |
Choline, total | mg | 147 | - | - | 59.7 | - | - | 293.8 |
Vitamin B-12 | µg | 0.45 | 0.73 | - | 0.31 | - | - | 0.89 |
Vitamin B-12, added | µg | - | - | - | - | - | - | - |
Vitamin A, RAE | µg | 80 | - | - | 41 | - | - | 160 |
Carotene, beta | µg | - | - | - | - | - | - | - |
Carotene, alpha | µg | - | - | - | - | - | - | - |
Cryptoxanthin, beta | µg | 4 | - | - | - | - | - | 9 |
Vitamin A, IU | IU | 270 | - | - | 137 | 2857 | 177 | 540 |
Lycopene | µg | - | - | - | - | - | - | |
Lutein + zeaxanthin | µg | 252 | - | - | - | - | - | 503 |
Vitamin E (alpha-tocopherol) | mg | 0.53 | - | - | 0.3 | - | - | 1.05 |
Vitamin E added | mg | - | - | - | - | - | - | - |
Tocopherol, beta | mg | 0.01 | - | - | - | - | - | 0.01 |
Tocopherol, gamma | mg | 0.25 | - | - | - | - | - | 0.5 |
Tocopherol, delta | mg | 0.03 | - | - | - | - | - | 0.06 |
Vitamin D (D2 + D3) | µg | 1 | 0.3 | - | 0.2 | - | - | 2 |
Vitamin D3 (cholecalciferol) | µg | 1 | 0.3 | - | - | - | - | 2 |
Vitamin D | IU | 11 | 14 | 10 | - | - | 82 | |
Vitamin K (phylloquinone) | µg | 3.4 | - | 1.5 | - | - | 0.3 | |
Lipids | ||||||||
h Fatty acids, total saturated | g | 1.56 | 29.5 | 19.64 | 4.31 | 50 | 0 | 3.126 |
Fatty acids, total monounsaturated | g | 1.83 | 30.9 | - | 6.24 | - | - | 3.658 |
Fatty acids, total polyunsaturated | g | 0.96 | 2.56 | - | 3.23 | - | - | 1.911 |
Fatty acids, trans | g | 0.02 | - | 0.097 | - | - | 0.038 | |
i Cholesterol | mg | 186 | 99 | 107 | 75 | 214 | 124 | 372 |
Amino Acids | ||||||||
Tryptophan | g | 0.08 | 0.05 | - | 0.207 | - | - | 0.167 |
Threonine | g | 0.28 | 0.33 | - | 0.767 | - | - | 0.556 |
Isoleucine | g | 0.34 | 0.37 | - | 0.924 | - | - | 0.671 |
Leucine | g | 0.54 | 0.65 | - | 1.35 | - | - | 1.086 |
Lysine | g | 0.46 | 0.69 | - | 1.509 | - | - | 0.912 |
Methionine | g | 0.19 | 0.21 | - | 0.493 | - | - | 0.38 |
Cystine | g | 0.14 | 0.11 | - | 0.249 | - | - | 0.272 |
Phenylalanine | g | 0.34 | 0.32 | - | 0.721 | - | - | 0.68 |
Tyrosine | g | 0.25 | 0.26 | - | 0.597 | - | - | 0.499 |
Valine | g | 0.43 | 0.41 | - | 0.902 | - | - | 0.858 |
Arginine | g | 0.41 | 0.53 | - | 1.169 | - | - | 0.82 |
Histidine | g | 0.15 | 0.26 | - | 0.544 | - | - | 0.309 |
Alanine | g | 0.37 | 0.5 | - | 1.089 | - | - | 0.735 |
Aspartic acid | g | 0.66 | 0.75 | - | 1.659 | - | - | 1.329 |
Glutamic acid | g | 0.84 | 1.23 | - | 2.714 | - | - | 1.673 |
Glycine | g | 0.22 | 0.5 | - | 1.223 | - | - | 0.432 |
Proline | g | 0.26 | 0.39 | - | 0.911 | - | - | 0.512 |
Serine | g | 0.49 | 0.32 | - | 0.657 | - | - | 0.971 |
Hydroxyproline | g | 0.09 | - | - | - | - | - |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, G.A. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018, 10, 780. https://doi.org/10.3390/nu10060780
Soliman GA. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients. 2018; 10(6):780. https://doi.org/10.3390/nu10060780
Chicago/Turabian StyleSoliman, Ghada A. 2018. "Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease" Nutrients 10, no. 6: 780. https://doi.org/10.3390/nu10060780
APA StyleSoliman, G. A. (2018). Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients, 10(6), 780. https://doi.org/10.3390/nu10060780