Effects of Dietary Acute Tryptophan Depletion (ATD) on NPY Serum Levels in Healthy Adult Humans Whilst Controlling for Methionine Supply—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethical Approval
2.3. Study Design
2.4. Procedures
2.5. Biochemical Assessments
2.6. Depletion Procedure
2.7. Laboratory Assessment
2.8. Calculation of TRP Influx
2.9. Data Analysis
3. Results
3.1. Potential Renal Acid Load (PRAL)
3.2. NPY Concentrations
3.2.1. Effects of Time and Neurochemical Conditions on NPY Concentrations
3.2.2. Interactions
3.3. Effects of the Challenge Procedure
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Spies, M.; Knudsen, G.M.; Lanzenberger, R.; Kasper, S. The serotonin transporter in psychiatric disorders: Insights from pet imaging. Lancet Psychiatry 2015, 2, 743–755. [Google Scholar] [CrossRef]
- Canli, T.; Lesch, K.-P. Long story short: The serotonin transporter in emotion regulation and social cognition. Nat. Neurosci. 2007, 10, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Dingerkus, V.; Gaber, T.; Helmbold, K.; Bubenzer, S.; Eisert, A.; Sánchez, C.; Zepf, F. Acute tryptophan depletion in accordance with body weight: Influx of amino acids across the blood–brain barrier. J. Neural Transm. 2012, 119, 1037–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Feder, A.; Wegener, G.; Bailey, C.; Saxena, S.; Charney, D.; Mathé, A.A. Central functions of neuropeptide y in mood and anxiety disorders. Expert Opin. Ther. Targets 2011, 15, 1317–1331. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.P.; Dube, M.G.; Sahu, A.; Phelps, C.P.; Kalra, P.S. Neuropeptide y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc. Natl. Acad. Sci. USA 1991, 88, 10931–10935. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.D.; Herzog, H.; Sainsbury, A. Neuropeptide y and peptide YY: Important regulators of energy metabolism. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J. Pharmacology of cotransmission in the autonomic nervous system: Integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol. Rev. 1996, 48, 113–178. [Google Scholar] [PubMed]
- Nozdrachev, A.; Masliukov, P. Neuropeptide y and autonomic nervous system. J. Evol. Biochem. Physiol. 2011, 47, 121–130. [Google Scholar] [CrossRef]
- Hashimoto, H.; Onishi, H.; Koide, S.; Toshihiro, K.; Yamagami, S. Plasma neuropeptide y in patients with major depressive disorder. Neurosci. Lett. 1996, 216, 57–60. [Google Scholar] [CrossRef]
- Steiger, H. Eating disorders and the serotonin connection: State, trait and developmental effects. J. Psychiatry Neurosci. 2004, 29, 20–29. [Google Scholar] [PubMed]
- Halford, J.C.; Cooper, G.D.; Dovey, T.M. The pharmacology of human appetite expression. Curr. Drug Targets 2004, 5, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.-P.; Fink, H. Serotonin controlling feeding and satiety. Behav. Brain Res. 2015, 277, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Czermak, C.; Hauger, R.; Drevets, W.C.; Luckenbaugh, D.A.; Geraci, M.; Charney, D.S.; Neumeister, A. Plasma NPY concentrations during tryptophan and sham depletion in medication-free patients with remitted depression. J. Affect. Disord. 2008, 110, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Dryden, S.; Wang, Q.; Frankish, H.M.; Pickavance, L.; Williams, G. The serotonin (5-ht) antagonist methysergide increases neuropeptide y (npy) synthesis and secretion in the hypothalamus of the rat. Brain Res. 1995, 699, 12–18. [Google Scholar] [CrossRef]
- Redrobe, J.P.; Dumont, Y.; Fournier, A.; Baker, G.B.; Quirion, R. Role of serotonin (5-ht) in the antidepressant-like properties of neuropeptide y (npy) in the mouse forced swim test. Peptides 2005, 26, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Ozsoy, S.; Eker, O.O.; Abdulrezzak, U. The effects of antidepressants on neuropeptide y in patients with depression and anxiety. Pharmacopsychiatry 2016, 49, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine ph. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Remer, T. Influence of nutrition on acid-base balance–metabolic aspects. Eur. J. Nutr. 2001, 40, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Ramage, A. Central cardiovascular regulation and 5-hydroxytryptamine receptors. Brain Res. Bull. 2001, 56, 425–439. [Google Scholar] [CrossRef]
- Demal, U. Skidpit-Light Screeningbogen; Universität Wien: Wien, Austria, 1999. [Google Scholar]
- Zepf, F.; Holtmann, M.; Stadler, C.; Demisch, L.; Schmitt, M.; Wöckel, L.; Poustka, F. Diminished serotonergic functioning in hostile children with adhd: Tryptophan depletion increases behavioural inhibition. Pharmacopsychiatry 2008, 41, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Zepf, F.; Stadler, C.; Demisch, L.; Schmitt, M.; Landgraf, M.; Poustka, F. Serotonergic functioning and trait-impulsivity in attention-deficit/hyperactivity-disordered boys (adhd): Influence of rapid tryptophan depletion. Hum. Psychopharmacol. Clin. Exp. 2008, 23, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Zepf, F.; Poustka, F. 5-ht functioning and aggression in children with adhd and disruptive behaviour disorders. Hum. Psychopharmacol. Clin. Exp. 2008, 23, 437–438. [Google Scholar] [CrossRef]
- Zepf, F.D.; Holtmann, M.; Poustka, F.; Wöckel, L. The role of serotonin in viral hepatitis-depletion of plasma tryptophan as a potential option to reduce virus persistence and immunopathology? Med. Hypotheses 2009, 72, 367. [Google Scholar] [CrossRef] [PubMed]
- Zepf, F.D.; Holtmann, M.; Stadler, C.; Wöckel, L.; Poustka, F. Reduced serotonergic functioning changes heart rate in adhd. J. Neural Transm. 2009, 116, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Zepf, F.D.; Wöckel, L.; Poustka, F.; Holtmann, M. Dietary tryptophan depletion according to body weight–a new treatment option in acute mania? Med. Hypotheses 2009, 72, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Stadler, C.; Zepf, F.; Demisch, L.; Schmitt, M.; Landgraf, M.; Poustka, F. Influence of rapid tryptophan depletion on laboratory-provoked aggression in children with adhd. Neuropsychobiology 2007, 56, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Kewitz, A. Biochemische Untersuchungen zur Optimierung des “Rapid Tryptophan Depletion-Test” (RTD)—Eine Physiologische Methode zur Akuten Verminderung der Zentralnervösen Serotonin-Synthese in der psychobiologischen Forschung. Ph.D. Thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany, 2002. [Google Scholar]
- Biskup, C.S.; Sánchez, C.L.; Arrant, A.; Van Swearingen, A.E.; Kuhn, C.; Zepf, F.D. Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in c57bl/6j and balb/cj mice. PLoS ONE 2012, 7, e35916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardridge, W.M. Brain metabolism: A perspective from the blood-brain barrier. Physiol. Rev. 1983, 63, 1481–1535. [Google Scholar] [CrossRef] [PubMed]
- Smith, Q.R.; Momma, S.; Aoyagi, M.; Rapoport, S.I. Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 1987, 49, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Oldendorf, W.H.; Szabo, J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol.-Leg. Content 1976, 230, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Smith, Q.R.; Stoll, J. Blood-brain barrier amino acid transport. In Introduction to the Blood-Brain Barrier: Methodology, Biology, and Pathology; University Press: Cambridge, UK, 1998; pp. 188–197. [Google Scholar]
- Kogner, P.; Ericsson, A.; Barbany, G.; Persson, H.; Theodorsson, E.; Bjork, O. Neuropeptide y (npy) synthesis in lymphoblasts and increased plasma npy in pediatric b-cell precursor leukemia. Blood 1992, 80, 1324–1329. [Google Scholar] [PubMed]
- Adrian, T.; Allen, J.; Bloom, S.; Ghatei, M.; Rossor, M.; Roberts, G.; Crow, T.; Tatemoto, K.; Polak, J. Neuropeptide y distribution in human brain. Nature 1983, 306, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Kogner, P.; Björk, O.; Theodorsson, E. Neuropeptide y in neuroblastoma: Increased concentration in metastasis, release during surgery, and characterization of plasma and tumor extracts. Pediatr. Blood Cancer 1993, 21, 317–322. [Google Scholar] [CrossRef]
- Enman, N.M.; Sabban, E.L.; McGonigle, P.; Van Bockstaele, E.J. Targeting the neuropeptide y system in stress-related psychiatric disorders. Neurobiol. Stress 2015, 1, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.B.; Costa, M.; Emson, P.C.; Håkanson, R.; Moghimzadeh, E.; Sundler, F.; Taylor, I.L.; Chance, R.E. Distribution, pathways and reactions to drug treatment of nerves with neuropeptide y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res. 1983, 234, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Cox, H.M. Neuropeptide y receptors; antisecretory control of intestinal epithelial function. Auton. Neurosci. Basic Clin. 2007, 133, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Delgado, P.L.; Charney, D.S.; Price, L.H.; Aghajanian, G.K.; Landis, H.; Heninger, G.R. Serotonin function and the mechanism of antidepressant action: Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch. Gen. Psychiatry 1990, 47, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Young, S.N.; Ervin, F.R.; Pihl, R.O.; Finn, P. Biochemical aspects of tryptophan depletion in primates. Psychopharmacology 1989, 98, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Asarian, L.; Bächler, T. Neuroendocrine control of satiation. Horm. Mol. Biol. Clin. Investig. 2014, 19, 163–192. [Google Scholar] [CrossRef] [PubMed]
- Cavuoto, P.; Fenech, M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev. 2012, 38, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Cahir, M.; Ardis, T.; Reynolds, G.P.; Cooper, S.J. Acute and chronic tryptophan depletion differentially regulate central 5-ht 1a and 5-ht 2a receptor binding in the rat. Psychopharmacology 2007, 190, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Yokota, N.; Yamawaki, S. Effect of chronic tryptophan depletion on the circadian rhythm of wheel-running activity in rats. Physiol. Behav. 1994, 55, 1005–1013. [Google Scholar] [CrossRef]
- Browne, C.A.; Clarke, G.; Dinan, T.G.; Cryan, J.F. An effective dietary method for chronic tryptophan depletion in two mouse strains illuminates a role for 5-ht in nesting behaviour. Neuropharmacology 2012, 62, 1903–1915. [Google Scholar] [CrossRef] [PubMed]
Challenge Condition (ATD/BAL) | Gender | Time Point | NPY Concentration (ρg/L) | |
---|---|---|---|---|
(T) | (M) | (SD) | ||
ATD | Total | 0 | 80.06 | 20.23 |
1 | 75.51 | 19.89 | ||
2 | 70.58 | 17.4 | ||
3 | 67.26 | 16.67 | ||
Men | 0 | 78.89 | 25.7 | |
1 | 74.82 | 21.8 | ||
2 | 71.25 | 20.47 | ||
3 | 68.58 | 17.97 | ||
Women | 0 | 81.13 | 14.68 | |
1 | 76.14 | 18.93 | ||
2 | 69.98 | 14.96 | ||
3 | 66.05 | 16.08 | ||
BAL | Total | 0 | 71.69 | 14.67 |
1 | 70.86 | 17.74 | ||
2 | 65.1 | 15.26 | ||
3 | 64.17 | 15.42 | ||
Men | 0 | 71.41 | 18.27 | |
1 | 71.19 | 20.53 | ||
2 | 63.85 | 18.98 | ||
3 | 66.67 | 17.07 | ||
Women | 0 | 71.95 | 11.26 | |
1 | 70.55 | 15.69 | ||
2 | 66.24 | 11.64 | ||
3 | 61.88 | 14.08 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, J.W.Y.; Morandini, H.A.E.; Dingerkus, V.L.S.; Gaber, T.J.; Runions, K.C.; Rao, P.; Mahfouda, S.; Helmbold, K.; Bubenzer-Busch, S.; Koenemann, R.; et al. Effects of Dietary Acute Tryptophan Depletion (ATD) on NPY Serum Levels in Healthy Adult Humans Whilst Controlling for Methionine Supply—A Pilot Study. Nutrients 2018, 10, 594. https://doi.org/10.3390/nu10050594
Wong JWY, Morandini HAE, Dingerkus VLS, Gaber TJ, Runions KC, Rao P, Mahfouda S, Helmbold K, Bubenzer-Busch S, Koenemann R, et al. Effects of Dietary Acute Tryptophan Depletion (ATD) on NPY Serum Levels in Healthy Adult Humans Whilst Controlling for Methionine Supply—A Pilot Study. Nutrients. 2018; 10(5):594. https://doi.org/10.3390/nu10050594
Chicago/Turabian StyleWong, Janice W. Y., Hugo A. E. Morandini, Vita L. S. Dingerkus, Tilman J. Gaber, Kevin C. Runions, Pradeep Rao, Simone Mahfouda, Katrin Helmbold, Sarah Bubenzer-Busch, Rebecca Koenemann, and et al. 2018. "Effects of Dietary Acute Tryptophan Depletion (ATD) on NPY Serum Levels in Healthy Adult Humans Whilst Controlling for Methionine Supply—A Pilot Study" Nutrients 10, no. 5: 594. https://doi.org/10.3390/nu10050594
APA StyleWong, J. W. Y., Morandini, H. A. E., Dingerkus, V. L. S., Gaber, T. J., Runions, K. C., Rao, P., Mahfouda, S., Helmbold, K., Bubenzer-Busch, S., Koenemann, R., Stewart, R. M., & Zepf, F. D. (2018). Effects of Dietary Acute Tryptophan Depletion (ATD) on NPY Serum Levels in Healthy Adult Humans Whilst Controlling for Methionine Supply—A Pilot Study. Nutrients, 10(5), 594. https://doi.org/10.3390/nu10050594