Selected Physiological Effects of a Garcinia Gummi-Gutta Extract in Rats Fed with Different Hypercaloric Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Biological Samples
2.3. Biochemical Analyses
2.4. Dual X-ray Absorptiometry (DXA)
2.5. Histology
2.6. Statistical Analysis
3. Results
3.1. Bioassay Performance
3.2. Biochemistry
3.3. Body Fat Distribution
3.4. Histological Examination
4. Discussion
4.1. Physiological Effects of Hypercaloric Diets
4.2. Physiological Effects of GGG Rind Extract Co-Administered with Hypercaloric Diets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- OECD. Obesity Update 2017. Organization for Economic Cooperation and Development (OECD), 2017. Available online: https://www.oecd.org/els/health-systems/Obesity-Update-2017.pdf (accessed on 15 February 2018).
- Abdelaal, M.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017, 5, 161. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Murad, M.H.; Chandar, A.K.; Dulai, P.S.; Wang, Z.; Prokop, L.J.; Loomba, R.; Camilleri, M.; Singh, S. Association of pharmacological treatments for obesity with weight loss and adverse events: A systematic review and meta-analysis. JAMA 2016, 315, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.C.; Kanters, S.; Bandayrel, K.; Wu, P.; Naji, F.; Siemieniuk, R.A.; Ball, G.D.; Busse, J.W.; Thorlund, K.; Guyatt, G.; et al. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA 2014, 312, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Heath, G.W.; Parra, D.C.; Sarmiento, O.L.; Andersen, L.B.; Owen, N.; Goenka, S.; Montes, F.; Brownson, R.C. Evidence-based intervention in physical activity: Lessons from around the world. Lancet 2012, 380, 272–281. [Google Scholar] [CrossRef]
- Gillison, F.; Stathi, A.; Reddy, P.; Perry, R.; Taylor, G.; Bennett, P.; Dunbar, J.; Greaves, C. Processes of behavior change and weight loss in a theory-based weight loss intervention program: A test of the process model for lifestyle behavior change. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Technavio. Global Weight Loss Supplements Market 2016–2020. Available online: https://www.technavio.com/report/global-health-and-wellness-weight-loss-supplement-market?utm_source=T4&utm_medium=BW&utm_campaign=Media (accessed on 15 February 2018).
- Semwal, R.B.; Semwal, D.K.; Vermaak, I.; Viljoen, A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia 2015, 102, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, J.; Lim, K. Nutrition supplements to stimulate lipolysis: A review in relation to endurance exercise capacity. J. Nutr. Sci. Vitaminol. 2016, 62, 141–161. [Google Scholar] [CrossRef] [PubMed]
- Igho, O.; Kang, H.S.; Rachel, P.; Barbara, W.; Edzard, E. The use of Garcinia extract (hydroxycitric acid) as a weight loss supplement: A systematic review and meta-analysis of randomized clinical trials. J. Obes. 2011, 509038. [Google Scholar] [CrossRef]
- Abdul Sani, S. Evaluating Inhibitory Potential Targeting Cholesteryl Ester Transfer Protein (CETP) by Hydroxycitric Acid (HCA) Found in Garcinia Species through Kinetic and In-Silico Technique. Doctoral Dissertation, University of Nottingham, Nottingham, UK, 2016. Available online: http://eprints.nottingham.ac.uk/33753/1/finalthesis.pdf (accessed on 15 February 2018).
- Altiner, A.; Ates, A.; Gursel, F.E.; Bilal, T. Effect of the antiobesity agent Garcinia cambogia extract on serumlipoprotein (a), apolipoproteins A1 and B, and total cholesterol levels in female rats fed atherogenic diet. J. Anim. Plant Sci. 2012, 22, 872–877. [Google Scholar]
- Ates, A.; Gürsel, F.E.; Altiner, A.; Bilal, T.; Erdogan, Ö.; Öziogurtcu, H. Effect of Garcinia cambogia extract on fatty liver in rats fed high lipid. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2011, 17, 1015–1020. [Google Scholar]
- Ates, A.; ESEN, G.F.; Bilal, T.; Altiner, A. Effect of dietary Garcinia cambogia Extract on Serum Lipid Profile and Serum Enzymes in Rats Fed High-Lipid Diet. Iran. J. Vet. Res. 2012, 13, 1–7. [Google Scholar]
- Kim, K.Y.; Lee, H.N.; Kim, Y.J.; Park, T. Garcinia cambogia extract ameliorates visceral adiposity in C57BL/6J mice fed on a high-fat diet. Biosci. Biotechnol. Biochem. 2008, 72, 1772–1780. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Choi, M.S.; Park, Y.B.; Kim, S.R.; Lee, M.K.; Jung, U.J. Garcinia Cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World J. Gastroenterol. 2013, 19, 4689. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.; Langhans, W.; Geary, N.; Leonhardt, M. Beneficial and deleterious effects of hydroxycitrate in rats fed a high-fructose diet. Nutrition 2006, 22, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Hayamizu, K.; Hirakawa, H.; Oikawa, D.; Nakanishi, T.; Takagi, T.; Tachibana, T.; Furuse, M. Effect of Garcinia cambogia extract on serum leptin and insulin in mice. Fitoterapia 2003, 74, 267–273. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Cossio-Bolaños, M.; Gómez Campos, R.; Vargas-Vitoria, R.; Fogaça, H.; Tadeu, R.; Arruda, M.D. Curvas de referencia para valorar el crecimiento físico de ratas machos Wistar. Nutr. Hosp. 2013, 28, 2151–2156. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Hall, C.B.; Marchello, M.J.; Siders, W.A. Validation of dual X-ray absorptiometry for body-composition assessment of rats exposed to dietary stressors. Nutrition 2001, 17, 607–613. [Google Scholar] [CrossRef]
- Saito, M.; Ueno, M.; Ogino, S.; Kubo, K.; Nagata, J.; Takeuchi, M. High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. Food Chem. Toxicol. 2005, 43, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 1999, 94, 2467. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Cragg, M.; Hite, A.; Rosenberg, M.; Zhou, B. Statistical review of US macronutrient consumption data, 1965–2011: Americans have been following dietary guidelines, coincident with the rise in obesity. Nutrition 2015, 31, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Salehi-Abargouei, A.; Akbari, F.; Bellissimo, N.; Azadbakht, L. Dietary diversity score and obesity: A systematic review and meta-analysis of observational studies. Eur. J. Clin. Nutr. 2016, 70, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Calton, E.K.; James, A.P.; Pannu, P.K.; Soares, M.J. Certain dietary patterns are beneficial for the metabolic syndrome: Reviewing the evidence. Nutr. Res. 2014, 34, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Brown, L. Rodent models for metabolic syndrome research. BioMed Res. Int. 2010. [Google Scholar] [CrossRef] [PubMed]
- Pierce, A.A.; Duwaerts, C.C.; Soon, R.K.; Siao, K.; Grenert, J.P.; Fitch, M.; Hellerstein, M.K.; Beysen, C.; Turner, S.M.; Maher, J.J. Isocaloric manipulation of macronutrients within a high-carbohydrate/moderate-fat diet induces unique effects on hepatic lipogenesis, steatosis and liver injury. J. Nutr. Biochem. 2016, 29, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Von Diemen, V.; Trindade, E.N.; Trindade, M.R.M. Experimental model to induce obesity in rats. Acta Cir. Bras. 2006, 21, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cui, J.Y.; Lu, H.; Klaassen, C.D. Effect of various diets on the expression of phase-I drug-metabolizing enzymes in livers of mice. Xenobiotica 2015, 45, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cui, J.Y.; Lu, H.; Klaassen, C.D. Effect of nine diets on xenobiotic transporters in livers of mice. Xenobiotica 2015, 45, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cui, J.Y.; Lu, H.; Klaassen, C.D. Effect of nine diets on mRNAs of phase-II conjugation enzymes in livers of mice. Xenobiotica 2017, 47, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Schreyer, S.A.; Wilson, D.L.; LeBoeuf, R.C. C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis 1998, 136, 17–24. [Google Scholar] [CrossRef]
- Picchi, M.G.; Mattos, A.M.D.; Barbosa, M.R.; Duarte, C.P.; Gandini, M.D.A.; Portari, G.V.; Jordão, A.A. A high-fat diet as a model of fatty liver disease in rats. Acta Cir. Bras. 2011, 26 (Suppl. 2), 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Y.; Xu, W.; Li, H.; Lei, H.; Zhang, L.; Hao, F.; Duan, Y.; Yan, X.; Zhao, Y.; Wu, J.; et al. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J. Proteome Res. 2013, 12, 3755–3768. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.A.; Rasti, M.; Bauer, P.V.; Lam, T.K. Leptin enhances hypothalamic LDHA-dependent glucose sensing to lower glucose production in high-fat fed rats. J. Biol. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Ávila, J.A.; Álvarez-Parrilla, E.; López-Díaz, J.A.; Maldonado-Mendoza, I.E.; del Consuelo Gómez-García, M.; Laura, A. The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Food Chem. 2015, 168, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Liu, M.; Portincasa, P.; Wang, D.Q.H. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur. J. Clin. Investig. 2013, 43, 1203–1223. [Google Scholar] [CrossRef] [PubMed]
- Mashek, D.G. Hepatic fatty acid trafficking: Multiple forks in the road. Adv. Nutr. 2013, 4, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.M. Dietary supplements for improving body composition and reducing body weight: Where is the evidence? Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Batista, P.M. Inhibition of digestive enzymes by medicinal plant aqueous extracts used to aid the treatment of obesity. J. Med. Plants Res. 2012, 6, 5826–5830. [Google Scholar] [CrossRef]
- Sullivan, A.C.; Triscari, J.; Hamilton, J.G.; Miller, O.N. Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat: II. Appetite. Lipids 1974, 9, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.C.; Triscari, J.; Hamilton, J.G.; Miller, O.N.; Wheatley, V.R. Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat: I. Lipogenesis. Lipids 1974, 9, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Chuah, L.O.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Alitheen, N.B. In vitro and in vivo toxicity of Garcinia or hydroxycitric acid: A review. Evid. Based Complment. Altern. Med. 2012. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, D.; Prakash, S.S.; Karunakara, A.C.; Diwakar, L.; Reddy, G.C. Issue of testicular toxicity of hydroxycitric acid lactone. Curr. Sci. 2011, 100, 24–27. [Google Scholar]
- Peng, M.; Li, L.; Yu, L.; Ge, C.; Ma, H. Effects of (−)-hydroxycitric acid on lipid droplet accumulation in chicken embryos. Anim. Sci. J. 2018, 89, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, L.; Wang, D.; Ma, H. (−)-Hydroxycitric acid reduced fat deposition via regulating lipid metabolism-related gene expression in broiler chickens. Lipids Health Dis. 2016, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Poudyal, H.; Iyer, A.; Nazer, R.; Alam, A.; Diwan, V.; Kauter, K.; Sernia, C.; Campbell, F.; Ward, L.; et al. High-carbohydrate high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. J. Cardiovasc. Pharmacol. 2011, 57, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Poudyal, H.; Arumugam, T.V.; Brown, L. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J. Nutr. 2011, 141, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.W.; Chiang, M.T.; Yao, H.T.; Chiang, W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes. Metab. 2004, 6, 120–126. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Control | Non-Supplemented 5 | Supplemented 5 (+) | ||||
---|---|---|---|---|---|---|---|
HF | HS | HFS | HF+ | HS+ | HFS+ | ||
GGG rind extract 1 | - | - | - | - | 5.9 | 5.9 | 5.9 |
Soybean oil 1 | 4.0 | 20.7 | 15.0 | 20.7 | 20.7 | 15.0 | 20.7 |
Raw sugar 1 | 9.0 | 9.0 | 51.9 | 30.4 | 9.0 | 51.9 | 30.4 |
Corn starch 1 | 56.8 | 35.0 | 4.9 | 13.8 | 35.0 | 4.9 | 13.8 |
Casein 2,3 | 12.1 | 12.1 | 12.1 | 12.1 | 12.1 | 12.1 | 12.1 |
Cellulose 2 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
AIN93G-mineral mix 2 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
AIN93-vitamin mix 2 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Choline chloride 4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Diet | Body Weight (g) | Dietary Intake (g/day) | |||
---|---|---|---|---|---|
Initial | Final | Δ Change | Food | GGG | |
Control 1 | 374.6 ± 22.3 b | 455.8 ± 23.6 ab | 81.2 ± 21.6 a | 17.5 ± 1.2 a | - |
HF 2 | 425.6 ± 13.7 a | 480.4 ± 30.8 a | 54.8 ± 18.3 ab | 14.8 ± 0.9 bc | - |
HS 2 | 433.4 ± 33.4 a | 483.4 ± 45.5 a | 49.9 ±27.6 b | 15.7 ± 2.3 b | - |
HFS 2 | 421.7 ± 32.1 a | 473.1 ± 35.9 a | 51.4 ± 10.3 b | 14.6 ± 1.0 bc | - |
HF+ 3 | 423.3 ± 37.6 a | 376.3 ± 45.6 c | −47.0 ± 23.6 d | 12.0 ± 1.2 d | 0.71 ± 0.07 b |
HS+ 3 | 432.9 ± 30.2 a | 416.6 ± 30.2 bc | −16.3 ± 21.3 c | 13.8 ± 0.9 c | 0.81 ± 0.05 a |
HFS+ 3 | 413.3 ± 18.7 ab | 414.5 ± 22.9 bc | 1.2 ± 30.5 c | 13.9 ± 0.3 c | 0.82 ± 0.01 a |
Glucose | Total Cholesterol | HDL-C | Triacylglycerides | Ketones 4 | |
---|---|---|---|---|---|
Control 1 | 103.4 ± 8.4 b | 126.8 ± 18.7 a | 43.0 ± 7.3 a | 248.4 ± 65.5 a | 3.5 ± 1.8 b |
HF 2 | 121.1 ± 16.6 a | 116.6 ± 15.8 a | 33.6 ± 6.7 bc | 144.7 ± 12.2 b | 7.1 ± 2.2 a |
HS 2 | 118.7 ± 6.1 ab | 128.8 ± 12.0 a | 35.8 ± 5.0 b | 208.1 ± 39.7 a | 6.9 ± 4.1 a |
HFS 2 | 116.7 ± 20.0 ab | 115.2 ± 7.1 a | 34.2 ± 6.0 bc | 151.5 ± 17.8 b | 7.2 ± 3.5 a |
HF+ 3 | 103.3 ± 4.9 b | 117.3 ± 10.4 a | 28.6 ± 3.1 c | 142.0 ± 10.6 b | 2.1 ± 0.7 b |
HS+ 3 | 122.9 ± 18.1 a | 121.6 ± 13.1 a | 32.9 ± 4.3 bc | 146.1 ± 18.9 b | 3.5 ± 1.8 b |
HFS+ 3 | 108.3 ± 8.1 ab | 115.3 ± 5.9 a | 27.1 ± 1.8 c | 137.0 ± 7.8 b | 4.2 ± 1.4 ab |
DXA 4 | Chemical (Soxhlet) | |||||
---|---|---|---|---|---|---|
Total | Abdominal | Thigh Areas 5 | Visceral | Hepatic 6 | Fecal 7 | |
Control 1 | 35.1 ± 2.3 a | 42.9 ± 2.7 abc | 27.5 ± 2.9 ab | 68.3 ± 1.6 bc | 5.9 ± 0.9 c | 1.0 ± 0.4 c |
HF 2 | 40.0 ± 4.4 a | 51.7 ± 3.8 a | 32.9 ± 7.2 a | 75.3 ± 1.6 a | 15.5 ± 5.7 a | 2.0 ± 0.5 ab |
HS 2 | 31.8 ± 6.1 ab | 42.3± 3.4 abc | 26.2 ± 4.3 ab | 68.8 ± 3.3 bc | 10.5 ± 4.9 abc | 1.7 ± 0.3 b |
HFS 2 | 37.6 ± 6.1 a | 49.3 ± 4.9 ab | 31.2 ± 5.1 a | 70.9 ± 1.2 bc | 12.1 ± 4.6 ab | 2.1 ± 0.2 ab |
HF+ 3 | 24.9 ± 3.6 b | 31.4 ± 10.0 d | 20.9 ± 2.2 b | 62.9 ± 7.3 c | 8.7 ± 2.5 bc | 2.4 ± 0.3 a |
HS+ 3 | 31.6 ± 7.7 ab | 42.3 ± 6.8 bc | 26.0 ± 6.5 ab | 65.8 ± 7.8 bc | 9.3 ± 4.8 bc | 2.2 ± 0.5 ab |
HFS+ 3 | 31.7 ± 2.7 ab | 38.6 ± 0.8 cd | 26.0 ±1.2 ab | 65.3 ± 6.1 bc | 9.1 ± 3.1 bc | 2.3 ± 0.5 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén-Enríquez, C.; Lopez-Teros, V.; Martín-Orozco, U.; López-Díaz, J.A.; Del Hierro-Ochoa, J.; Ramos-Jiménez, A.; Astiazarán-García, H.; Martínez-Ruiz, N.D.R.; Wall-Medrano, A. Selected Physiological Effects of a Garcinia Gummi-Gutta Extract in Rats Fed with Different Hypercaloric Diets. Nutrients 2018, 10, 565. https://doi.org/10.3390/nu10050565
Guillén-Enríquez C, Lopez-Teros V, Martín-Orozco U, López-Díaz JA, Del Hierro-Ochoa J, Ramos-Jiménez A, Astiazarán-García H, Martínez-Ruiz NDR, Wall-Medrano A. Selected Physiological Effects of a Garcinia Gummi-Gutta Extract in Rats Fed with Different Hypercaloric Diets. Nutrients. 2018; 10(5):565. https://doi.org/10.3390/nu10050565
Chicago/Turabian StyleGuillén-Enríquez, Carolina, Veronica Lopez-Teros, Ubicelio Martín-Orozco, José A. López-Díaz, Julio Del Hierro-Ochoa, Arnulfo Ramos-Jiménez, Humberto Astiazarán-García, Nina Del Rocío Martínez-Ruiz, and Abraham Wall-Medrano. 2018. "Selected Physiological Effects of a Garcinia Gummi-Gutta Extract in Rats Fed with Different Hypercaloric Diets" Nutrients 10, no. 5: 565. https://doi.org/10.3390/nu10050565