Dietary Patterns Associated with Cognitive Function among the Older People in Underdeveloped Regions: Finding from the NCDFaC Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Assessment of Cognitive Function
2.3. Assessment of Dietary Intake
2.4. Dietary Patterns Assessment
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Identification of Dietary Patterns
3.3. Distribution of Characteristics by Dietary Patterns Scores Quartiles
3.4. Associations of Dietary Patterns with Cognitive Function
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Prince, M.; Comas-Herrera, A.; Knapp, M.; Guerchet, M.; Karagiannidou, M. Improving Healthcare for People Living with Dementia. Coverage, Quality and Costs Now and Into the Future; World Alzheimer Report 2016; Alzheimer’s Disease International: London, UK, 2016. [Google Scholar] [CrossRef]
- Chan, K.Y.; Wang, W.; Wu, J.J.; Liu, L.; Theodoratou, E.; Car, J.; Middleton, L.; Russ, T.C.; Deary, I.J.; Campbell, H.; et al. Global Health Epidemiology Reference Group (GHERG). Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: A systematic review and analysis. Lancet 2013, 381, 2016–2023. [Google Scholar] [CrossRef]
- Connors, M.H.; Sachdev, P.S.; Kochan, N.A.; Xu, J.; Draper, B.; Brodaty, H. Cognition and mortality in older people: The Sydney Memory and Ageing Study. Age Ageing 2015, 44, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Holroyd-Leduc, J.M.; Poulin, M.J.; Hogan, D.B. Effect of Nutrients, dietary supplements and Vitamins on cognition: A systematic review and meta-analysis of randomized controlled trials. Can. Geriatr. J. 2015, 18, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, S.; Richards, M.; Pierce, M.; Ambrosini, G.L. A high-fat, high-glycaemic index, low-fibre dietary pattern is prospectively associated with type 2 diabetes in a British birth cohort. Br. J. Nutr. 2016, 115, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Safford, M.M.; Newby, P.K.; Durant, R.W.; Brown, T.M.; Judd, S.E. Southern Dietary Pattern is Associated With Hazard of Acute Coronary Heart Disease in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Circulation 2015, 132, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Allès, B.; Samieri, C.; Féart, C.; Jutand, M.A.; Laurin, D.; Barberger-Gateau, P. Dietary patterns: A novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr. Res. Rev. 2012, 25, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Kurt, H.; Matthias, B.S.; Anja, S.; Ute, N.; Heiner, B. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F. Mediterranean diet and cognitive decline. A lesson from the whole-diet approach: What challenges lie ahead? J. Alzheimers Dis. 2014, 39, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.A.M.; Kang, J.H.; van de Rest, O.; Feskens, E.J.M.; de Groot, L.C.P.G.M.; Grodstein, F. The Dietary Approaches to Stop Hypertension Diet, Cognitive Function, and Cognitive Decline in American Older Women. J. Am. Med. Dir. Assoc. 2017, 18, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Kesse-Guyot, E.; Andreeva, V.A.; Jeandel, C.; Ferry, M.; Hercberg, S.; Galan, P. A Healthy Dietary Pattern at Midlife Is Associated with Subsequent Cognitive Performance. J. Nutr. 2012, 142, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yu, A.; Choi, B.Y.; Nam, J.H.; Kim, M.K.; Oh, D.H.; Yang, Y.J. Dietary patterns derived by cluster analysis are associated with cognitive function among Korean older adults. Nutrients 2015, 7, 4154–4169. [Google Scholar] [CrossRef] [PubMed]
- Ashby-Mitchell, K.; Peeters, A.; Anstey, K.J. Role of dietary pattern analysis in determining cognitive status in elderly Australian adults. Nutrients 2015, 7, 1052–1067. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Jung, C.C.; Chen, J.H.; Chiou, J.M.; Chen, T.F.; Chen, Y.F.; Tang, S.C.; Yeh, S.J.; Lee, M.S. Association of dietary patterns with global and domain-specific cognitive decline in Chinese elderly. J. Am. Geriatr. Soc. 2017, 65, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Parrott, M.D.; Shatenstein, B.; Ferland, G.; Payette, H.; Morais, J.A.; Belleville, S.; Kergoat, M.J.; Gaudreau, P.; Greenwood, C.E. Relationship between diet quality and cognition depends on socioeconomic position in healthy older adults. J. Nutr. 2013, 143, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
- China NNHS Steering Committee; China NNHS Working Group; Wu, Y.; Huxley, R.; Li, L.; Anna, V.; Xie, G.; Yao, C.; Woodward, M.; Li, X.; et al. Prevalence, awareness, treatment, and control of hypertension in China: Data from the China National Nutrition and Health Survey 2002. Circulation 2008, 118, 2679–2686. [Google Scholar] [CrossRef]
- Cui, G.H.; Yao, Y.H.; Xu, R.F.; Tang, H.D.; Jiang, G.X.; Wang, G.; Chen, S.D.; Cheng, Q. Cognitive impairment using education-based cutoff points for CMMSE scores in elderly Chinese people of agricultural and rural Shanghai China. Acta Neurol. Scand. 2011, 124, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Fei, Z.; Qiu, C.; Brasher, M.S.; Kraus, V.B.; Zhao, W.; Shi, X.; Zeng, Y. Dietary diversity and cognitive function among elderly people: A population-based study. J. Nutr. Health Aging 2017, 21, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, Y.; Li, Y.; Luan, D.; Yang, X.; Zhai, F.; Ma, G. Dietary patterns and hypertension among Chinese adults: A nationally representative cross-sectional study. BMC Public Health 2011, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Su, C.; Zhang, J.; Zhai, F.Y.; Zhang, B. Trends in dietary fiber intake in Chinese aged 45 years and above, 1991–2011. Eur. J. Clin. Nutr. 2014, 68, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Han, T.; Zhang, W.; Wu, X.; Na, G.; Du, S.; Li, Y.; Sun, C. Snack dietary pattern increases the risk of hypercholesterolemia in northern Chinese adults: A prospective cohort study. PLoS ONE 2015, 10, e0134294. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Ford, A.B.; Moscowitz, R.W.; Jackson, B.A.; Jaffe, M.W. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Joint committee for guideline revision. 2016 Chinese guidelines for the management of dyslipidemia in adults. J. Geriatr. Cardiol. 2018, 15, 1–29. [Google Scholar] [CrossRef]
- Yin, Z.; Yan, Z.; Liang, Y.; Jiang, H.; Cai, C.; Song, A.; Feng, L.; Qiu, C. Inte ractive effects of diabetes and impaired kidney function on cognitive performance in old age: A population-based study. BMC Geriatr. 2016, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Inagaki, H.; Gondo, Y.; Kamide, K.; Ikebe, K.; Masui, Y.; Arai, Y.; Ishizaki, T.; Sasaki, S.; Nakagawa, T.; et al. SONIC Study Group. Association between dietary patterns and cognitive function among 70-year-old Japanese elderly: A cross-sectional analysis of the SONIC study. Nutr. J. 2017, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, J.; Song, D.; Deng, R.; Wei, J.; Zhang, Z. Increased consumption of fruit and vegetables is related to a reduced risk of cognitive impairment and dementia: Meta-analysis. Front. Aging Neurosci. 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.F.; Andel, R.; Small, B.J.; Borenstein, A.R.; Mortimer, J.A.; Wolk, A.; Johansson, B.; Fratiglioni, L.; Pedersen, N.L.; Gatz, M. Midlife fruit and vegetable consumption and risk of dementia in later life in Swedish twins. Am. J. Geriatr. Psychiatry 2010, 18, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tomata, Y.; Sugiyama, K.; Sugawara, Y.; Tsuji, I. Mushroom consumption and incident dementia in elderly Japanese: The Ohsaki Cohort 2006 Study. J. Am. Geriatr. Soc. 2017, 65, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Q.; Wang, G.; Wu, J.Y. Contents and antioxidant activities of polysaccharides in 14 wild mushroom species from the forest of northeastern China. Int. J. Med. Mushrooms 2015, 17, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Okereke, O.; Devore, E.; Rosner, B.; Breteler, M.; Grodstein, F. Long-term intake of nuts in relation to cognitive function in older women. J. Nutr. Health Aging 2014, 18, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Pribis, P.; Shukitt-Hale, B. Cognition: The new frontier for nuts and berries. Am. J. Clin. Nutr. 2014, 100, 347S–352S. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Cai, H.; Yang, G.; Xu, W.H.; Zheng, W.; Li, H.; Gao, Y.T.; Xiang, Y.B.; Shu, X.O. Dietary patterns and blood pressure among middle-aged and elderly Chinese men in Shanghai. Br. J. Nutr. 2010, 104, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.C.; Lee, S.H. Determinants of new-onset diabetes in older adults—Results of a national cohort study. Clin. Nutr. 2015, 34, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Okuda, N.; Okayama, A.; Miura, K.; Yoshita, K.; Saito, S.; Nakagawa, H.; Sakata, K.; Miyagawa, N.; Chan, Q.; Elliott, P.; et al. Food sources of dietary sodium in the Japanese adult population: The international study of macro-/micronutrients and blood pressure (INTERMAP). Eur. J. Nutr. 2017, 56, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Shakersain, B.; Santoni, G.; Larsson, S.C.; Faxén-Irving, G.; Fastbom, J.; Fratiglioni, L.; Xu, W. Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement. 2016, 12, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Staubo, S.C.; Aakre, J.A.; Vemuri, P.; Syrjanen, J.A.; Mielke, M.M.; Geda, Y.E.; Kremers, W.K.; Machulda, M.M.; Knopman, D.S.; Petersen, R.C.; et al. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimers Dement. 2017, 13, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Jagger, C. Dietary patterns high in red meat, potato, gravy, and butter are associated with poor cognitive functioning but not with rate of cognitive decline in very old adults. J. Nutr. 2016, 146, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of dietary patterns, foods, and micro- and macronutrients with Alzheimer’s Disease and late-life cognitive disorders: A Systematic Review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Chan, D.; Woo, J. A cross sectional study to examine the association between dietary patterns and cognitive impairment in older Chinese people in Hong Kong. J. Nutr. Health Aging 2013, 17, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Plassman, B.L.; Edwards, L.J.; Popkin, B.M.; Adair, L.S.; Mendez, M.A. Fish intake is associated with slower cognitive decline in Chinese older adults. J. Nutr. 2014, 144, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Chinese Nutrition Association. Dietary Guidelines for Chinese Residents 2016; People’s Medical Publishing House: Beijing, China, 2016. [Google Scholar]
- Kuczmarski, M.F.; Allegro, D.; Stave, E. The association of healthful diets and cognitive function: A review. J. Nutr. Gerontol. Geriatr. 2014, 33, 69–90. [Google Scholar] [CrossRef] [PubMed]
- López, M.E.; Turrero, A.; Delgado, M.L.; Rodríguez-Rojo, I.C.; Arrazola, J.; Barabash, A.; Maestú, F.; Fernández, A. APOE ε4 Genotype and Cognitive Reserve Effects on the Cognitive Functioning of Healthy Elders. Dement. Geriatr. Cogn. Disord. 2018, 44, 328–342. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Cognitive Impairment | p Value | |
---|---|---|---|
No | Yes | ||
No. of participants | 1214 | 290 | |
Age (years), mean (SD) | 67.8 (6.2) | 72.9 (7.7) | <0.001 |
Female | 563 (48.4) | 152 (54.9) | 0.10 |
Formal education level (years) | |||
0 | 99 (8.2) | 55 (19.0) | <0.001 |
1–6 | 614 (50.6) | 120 (41.4) | |
>6 | 501 (41.3) | 115 (39.7) | |
Marital status | 1034 (85.2) | 223 (76.9) | <0.001 |
Current smoking | 282 (23.2) | 48 (16. 6) | 0.01 |
Alcohol drinking | 188 (15.5) | 25 (8.6) | 0.002 |
Lower physical activities | 784 (64.6) | 216 (74.5) | 0.001 |
Energy intake | 1544.2 (719.2) | 1318.5 (686.4) | <0.001 |
Stroke | 131(10.8) | 38 (13.1) | 0.26 |
Hypertension | 746 (61.5) | 173 (59.7) | 0.57 |
Diabetes | 147 (12. 1) | 35 (12.1) | 0.99 |
ADL disability | 210 (17.4) | 115 (35.0) | <0.001 |
Obesity | 132 (10.9) | 22 (7.6) | 0.10 |
High triglyceride | 181 (14.9) | 37 (12.8) | 0.35 |
High cholesterol | 75 (6.2) | 13 (4.5) | 0.27 |
Foods/Food Groups | MVF | MS |
---|---|---|
Cereal and Grains | 0.375 | −0.103 |
Tubers | 0.298 | 0.062 |
Fried foods | −0.044 | 0.195 |
Red meat | 0.136 | 0.558 a |
Poultry meat | 0.048 | 0.572 a |
Organ meat | 0.074 | 0.438 a |
Aquatic products | 0.060 | 0.442 a |
Milk | 0.230 | −0.041 |
Dairy products | 0.057 | −0.061 |
Eggs | 0.209 | 0.196 |
Soybean products | 0.138 | 0.581 a |
Soybean milk | 0.283 | 0.002 |
Dried legumes | 0.406 a | −0.066 |
Vegetables | 0.493 a | −0.181 |
Pickles | −0.008 | 0.061 |
Fresh mushrooms | 0.496 a | 0.062 |
Dried mushrooms | 0.483 a | 0.088 |
Dessert | −0.047 | 0.226 |
Fruits | 0.443 a | 0.080 |
Nuts | 0.329 | 0.093 |
Alcoholic beverages | 0.21 | 0.070 |
Fruit and vegetables juices | 0.199 | 0.130 |
Beverage | 0.085 | 0.213 |
Tea | 0.247 | 0.105 |
% of explained variance | 56.5% | 38.4% |
% of accumulated explained variance | 56.5% | 94.9% |
MVF Dietary Pattern | MS Dietary Pattern | |||||
---|---|---|---|---|---|---|
Q1 | Q4 | p trend | Q1 | Q4 | p trend | |
Age | 70.6 (7.7) | 66.6 (5.5) | <0.001 | 69.2 (6.6) | 68.5 (7.0) | 0.06 |
Female (%) | 213 (56.7) | 156 (41.5) | <0.001 | 208 (55.5) | 159 (42.4) | <0.001 |
Lack of formal education | 60 (16.0) | 19 (5.1) | <0.001 | 48 (12.8) | 23 (6.1) | 0.10 |
Marital Status | 305 (81.1) | 344 (91.5) | <0.001 | 294 (78.4) | 336 (89.4) | <0.001 |
Current smoking | 79 (20.0) | 80 (21.3) | 0.82 | 67 (17.9) | 107 (28.5) | <0.001 |
Alcohol drinking | 43 (11.4) | 81(21.5) | <0.001 | 46 (12.3) | 72 (19.2) | 0.006 |
Lower physical activities | 282 (75.0) | 205 (54.5) | <0.001 | 229 (61.1) | 260 (69.2) | 0.04 |
Energy intake | 1299.7 (632.3) | 1742.8 (760.1) | <0.001 | 1366.8 (601.4) | 1753.7 (788.2) | <0.001 |
Salt intake | 7.2 (2.60) | 8.1 (3.2) | 0.003 | 8.3 (3.5) | 7.5 (2.8) | 0.005 |
Stroke | 37 (9.8) | 48 (12.8) | 0.29 | 67 (17.9) | 25 (6.7) | <0.001 |
Hypertension | 194 (51.6) | 250 (66.5) | 0.001 | 277 (73.9) | 183 (48.7) | <0.001 |
Diabetes | 39 (10.4) | 56 (14.9) | 0.02 | 62 (16.5) | 31 (8.2) | <0.001 |
ADL disability | 101 (27.2) | 44 (11.8) | <0.001 | 80 (21.5) | 61 (16.3) | 0.06 |
Obesity | 30 (7.98) | 41 (10.90) | 0.20 | 51 (13.6) | 34 (9.0) | 0.12 |
High TC | 29(7.7) | 19 (5.3) | 0.14 | 19 (5.1) | 19(5.1) | 0.93 |
High TG | 55 (14.6) | 61 (16.2) | 0.43 | 59(15.7) | 48 (12.8) | 0.38 |
Quartiles of Dietary Patterns | p trend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
MVF dietary pattern | |||||
Unadjusted | 1.00 | 0.68 (0.48, 0.96) * | 0.56 (0.39, 0.80) ** | 0.38 (0.26, 0.57) ** | <0.001 |
Model 1 | 1.00 | 0.68 (0.47,1.01) | 0.68 (0.46,1.01) | 0.53 (0.34, 0.81) ** | 0.004 |
Model 2 | 1.00 | 0.70 (0.48, 1.02) | 0.70 (0.47, 1.04) | 0.60 (0.38, 0.94) * | 0.03 |
MS dietary pattern | |||||
Unadjusted | 1.00 | 0.78 (0.55, 1.11) | 0.63 (0.44, 0.90) * | 0.44 (0.30, 0.65) ** | <0.001 |
Model 1 | 1.00 | 0.76 (0.52, 1.10) | 0.70 (0.48, 1.03) | 0.47 (0.31, 0.71) ** | <0.001 |
Model 2 | 1.00 | 0.70 (0.48, 1.03) | 0.68 (0.46, 1.01) | 0.47 (0.30, 0.74) ** | 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Chen, J.; Zhang, J.; Ren, Z.; Dong, K.; Kraus, V.B.; Wang, Z.; Zhang, M.; Zhai, Y.; Song, P.; et al. Dietary Patterns Associated with Cognitive Function among the Older People in Underdeveloped Regions: Finding from the NCDFaC Study. Nutrients 2018, 10, 464. https://doi.org/10.3390/nu10040464
Yin Z, Chen J, Zhang J, Ren Z, Dong K, Kraus VB, Wang Z, Zhang M, Zhai Y, Song P, et al. Dietary Patterns Associated with Cognitive Function among the Older People in Underdeveloped Regions: Finding from the NCDFaC Study. Nutrients. 2018; 10(4):464. https://doi.org/10.3390/nu10040464
Chicago/Turabian StyleYin, Zhaoxue, Jing Chen, Jian Zhang, Zeping Ren, Kui Dong, Virginia B. Kraus, Zhuoqun Wang, Mei Zhang, Yi Zhai, Pengkun Song, and et al. 2018. "Dietary Patterns Associated with Cognitive Function among the Older People in Underdeveloped Regions: Finding from the NCDFaC Study" Nutrients 10, no. 4: 464. https://doi.org/10.3390/nu10040464
APA StyleYin, Z., Chen, J., Zhang, J., Ren, Z., Dong, K., Kraus, V. B., Wang, Z., Zhang, M., Zhai, Y., Song, P., Zhao, Y., Pang, S., Mi, S., & Zhao, W. (2018). Dietary Patterns Associated with Cognitive Function among the Older People in Underdeveloped Regions: Finding from the NCDFaC Study. Nutrients, 10(4), 464. https://doi.org/10.3390/nu10040464