Next Article in Journal
Maternal Consumption of Low-Isoflavone Soy Protein Isolate Confers the Increased Predisposition to Alcoholic Liver Injury in Adult Rat Offspring
Previous Article in Journal
Sucrosomial Iron Supplementation in Anemic Patients with Celiac Disease Not Tolerating Oral Ferrous Sulfate: A Prospective Study
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Nutrients 2018, 10(3), 331; https://doi.org/10.3390/nu10030331

Milk Fat Globule Membrane Attenuates High-Fat Diet-Induced Obesity by Inhibiting Adipogenesis and Increasing Uncoupling Protein 1 Expression in White Adipose Tissue of Mice

1,2, 1,2, 3, 1,2 and 1,2,*
1
Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
2
College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China
3
Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
*
Author to whom correspondence should be addressed.
Received: 31 January 2018 / Revised: 26 February 2018 / Accepted: 2 March 2018 / Published: 9 March 2018
  |  
PDF [2123 KB, uploaded 9 March 2018]
  |  

Abstract

Milk fat globule membrane (MFGM), a protein-lipid complex surrounding the fat globules in milk, has many health benefits. The aim of the current study was to investigate whether MFGM could prevent obesity through inhibiting adipogenesis and promoting brown remodeling of white adipose tissue (WAT) in mice fed with high-fat diet. C57BL/6 mice were fed a normal diet (ND), high-fat diet (HFD), HFD plus MFGM at 100 mg/kg BW, 200 mg/kg BW or 400 mg/kg BW for 8 weeks. Results showed that MFGM suppressed body weight gain induced by HFD, reduced white adipose tissue (WAT) mass accompanied with the decrease in adipocyte sizes. MFGM was found to have partially improved serum lipid profiles, as well as to have suppressed HFD-induced adipogenesis as shown by reduced expression of peroxisome proliferators-activator receptor-γ (PPARγ), CCAAT/enhancer-binding protein-α (C/EBPα) and sterol regulatory element-binding protein-1c (SREBP-1c). MFGM also markedly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), showing activation of AMPK pathway. Moreover, MFGM promoted browning of inguinal WAT by upregulation the protein expression of uncoupling protein 1 (UCP1) in HFD mice. Taken together, these findings provide evidence that MFGM may protect against diet-induced adiposity by suppressing adipogenesis and promoting brown-like transformation in WAT. View Full-Text
Keywords: milk fat globule membrane; adipogenesis; adipose tissue; obesity; uncoupling protein 1 milk fat globule membrane; adipogenesis; adipose tissue; obesity; uncoupling protein 1
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Li, T.; Gao, J.; Du, M.; Song, J.; Mao, X. Milk Fat Globule Membrane Attenuates High-Fat Diet-Induced Obesity by Inhibiting Adipogenesis and Increasing Uncoupling Protein 1 Expression in White Adipose Tissue of Mice. Nutrients 2018, 10, 331.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top