Nutrition in the Very Old
Abstract
:1. Introduction
- The first part addresses (i) demographic transition and the increase of the very old population (Section 1.1); (ii) the importance of nutritional research in the very old (Section 1.2); and (iii) protein intake and muscle function as an example of the importance of nutritional research in very old adults (Section 1.2.1).
- The second part summarizes the current understanding of nutrition in the very old based on the insights from six European studies and two specialized cohorts of the very old that includes (i) what the very old eat and food sources of energy and nutrients (Section 2.1); (ii) nutritional statuses of the very old, with an example of micronutrient deficiency (Section 2.2); and (iii) nutritional needs of the very old, using the example of relationships between protein intake and vitamin D status and (objectively measured) physical functioning (Section 2.3).
- The third part updates the recent findings from the specialist cohorts dedicated to the very old, i.e., the Newcastle 85+ Study (Section 3.1, Section 3.2, Section 3.3 and Section 3.4) and the LiLACS NZ (Section 3.5, Section 3.6 and Section 3.7). This includes (i) the main characteristics of participants (Section 3.1) and dietary assessment (Section 3.1.1) in the Newcastle 85+ Study; (ii) the role of dietary patterns (Section 3.2) and nutritional biomarkers (serum vitamin D) (Section 3.3) in physical functioning in the very old; (iii) prevalence and determinants of low protein intake in the very old from the Newcastle 85+ Study (Section 3.4); (iv) the main characteristics of participants (Section 3.5) and dietary assessment (Section 3.5.1) in the LiLACS NZ; and (v) food contribution to macro (Section 3.6) and micronutrients (Section 3.7) in very old Māori and non-Māori adults.
- The fourth part addresses the challenges in establishing nutritional needs in the very old that are related to (i) nutritional assessments (Section 4.1); and (ii) heterogeneity in health in the very old (Section 4.2) and gives some suggestions for the future nutritional research in the very old.
- The fifth, concluding part highlights the main points discussed about the current state of knowledge of nutritional assessments, nutritional status and nutritional needs of very old adults.
1.1. Ageing Demographics: The Rise of the Very Old
1.2. Why Is It Important to Research Nutrition in the Very Old?
1.2.1. Importance of Nutritional Research in the Very Old: Example of Low Protein Intake and Muscle Function
2. Current Understanding of Nutrition in the Very Old: Insights from the European Studies and Specialized Cohorts of the Very Old
2.1. What the Very Old Eat: Food Sources for Energy and Nutrients
2.2. Nutritional Status of the Very Old: Example of Micronutrient Deficiency
2.3. Nutritional Needs of the Very Old: Example of Protein and (Serum) Vitamin D for Muscle Health
3. Cohorts Dedicated to the Very Old: Additional Findings from the Newcastle 85+ and the LiLACS NZ
3.1. The Newcastle 85+ Study
3.1.1. Dietary Assessment in the Very Old
3.2. Dietary Patterns and Physical Functioning in the Very Old
3.3. Nutritional Biomarkers and Physical Functioning in the Very Old: 25(OH)D
3.4. Prevalence and Determinants of Low Protein Intake in the Newcastle 85+ Study
3.5. Life and Living in Advanced Age Study (the LiLACS Study): A Cohort Study in New Zealand-e Puãwaitanga o Nga Tapuwae Kia Ora Tonu
3.5.1. Dietary Assessment in the Very Old
3.6. Food Contribution to Macronutrients: Comparison between Very Old Māori and Non-Māori Adults
3.7. Food Contribution to Micronutrients: Comparison between Very Old Māori and Non-Māori Adults
4. Challenges in Establishing Nutritional Needs in the Very Old
4.1. Challenges with Nutritional Assessments in the Very Old
4.2. Heterogeneity in Health in the Very Old
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Global Health and Aging. National Institute of Health Publication No. 11-7737. Available online: http://www.who.int/ageing/publications/global_health.pdf (accessed on 24 January 2018).
- Sander, M.; Oxlund, B.; Jespersen, A.; Krasnik, A.; Mortensen, E.L.; Westendorp, R.G.; Rasmussen, L.J. The challenges of human population ageing. Age Ageing 2015, 44, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.W.; Kahn, R.L. Successful aging 2.0: Conceptual expansions for the 21st century. J. Gerontol. B Psychol. Sci. Soc. Sci. 2015, 70, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Kingston, A.; Robinson, L.; Booth, H.; Knapp, M.; Jagger, C. for the MODEM project. Projections of multi-morbidity in the older population in England to 2035: Estimates from the Population Ageing and Care Simulation (PACSim) model. Age Ageing 2018. [Google Scholar] [CrossRef]
- Kirkwood, T.B. A systematic look at an old problem. Nature 2008, 451, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Mathers, J.C. Impact of nutrition on the ageing process. Br. J. Nutr. 2015, 113, S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Kiefte-de Jong, J.C.; Mathers, J.C.; Franco, O.H. Nutrition and healthy ageing: The key ingredients. Proc. Nutr. Soc. 2014, 73, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, N.; Geelen, A.; Streppel, M.T.; de Groot, L.C.; Orfanos, P.; van den Hooven, E.H.; Pikhart, H.; Boffetta, P.; Trichopoulou, A.; Bobak, M.; et al. Adherence to a healthy diet according to the World Health Organization guidelines and all-cause mortality in elderly adults from Europe and the United States. Am. J. Epidemiol. 2014, 180, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Evans, W.J. Nutrition, physical activity, and quality of life in older adults: Summary. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Van Bokhorst-de van der Schueren, M.A.; Lonterman-Monasch, S.; de Vries, O.J.; Danner, S.A.; Kramer, M.H.; Muller, M. Prevalence and determinants for malnutrition in geriatric outpatients. Clin. Nutr. 2013, 32, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Goodkind, D.; Kowal, P. An Aging World: 2015; U.S. Census Bureau, International Population Reports, P95/16-1; U.S. Government Publishing Office: Washington, DC, USA, 2016. Available online: https://www.census.gov/content/dam/Census/library/publications/2016/demo/p95-16-1.pdf (accessed on 24 January 2018).
- Oeppen, J.; Vaupel, J.W. Broken limits to life expectancy. Science 2002, 296, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- European Commission—Eurostat. Population Structure and Ageing. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing (accessed on 5 January 2018).
- European Commission—Eurostat. Mortality and Life Expectancy Statistics. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Mortality_and_life_expectancy_statistics (accessed on 10 January 2018).
- European Commission—Eurostat. Over 27 Million People Aged 80 and over in the EU. Eurostat News, Product Code: EDN-20170930-1, Published on 30 September 2017. Available online: http://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/EDN-20170930-1 (accessed on 10 January 2018).
- Office for National Statistics. National Life Tables, UK: 2014 to 2016. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/2014to2016 (accessed on 10 January 2018).
- Office for National Statistics. National population projection: 2016-based statistical bulletin. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections/bulletins/nationalpopulationprojections/2016basedstatisticalbulletin (accessed on 10 January 2018).
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef]
- Vincent, G.K.; Velkoff, V.A. The Next Four Decades, The Older Population in the United States: 2010 to 2050; Current Population Reports; US Census Bureau: Washington, DC, USA, 2010; pp. 25–1138. Available online: https://www.census.gov/prod/2010pubs/p25-1138.pdf (accessed on 24 January 2018).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2010 Revision, Volume I: Comprehensive Tables. ST/ESA/SER.A/313. Available online: http://www.un.org/en/development/desa/population/publications/pdf/trends/WPP2010/WPP2010_Volume-I_Comprehensive-Tables.pdf (accessed on 15 January 2018).
- European Commission—Eurostat. Healthy Life Years and Life Expectancy at Age 65 by Sex. Code: Tsdph220, updated on 28 November 2017). Available online: http://ec.europa.eu/eurostat/web/products-datasets/-/tsdph220 (accessed on 10 January 2018).
- Kingston, A.; Jagger, C. Review of methodologies of cohort studies of older people. Age Ageing 2017, 47, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Börsch-Supan, A.; Brandt, M.; Hunkler, C.; Kneip, T.; Korbmacher, J.; Malter, F.; Schaan, B.; Stuck, S.; SHARE Central Coordination Team. Data resource profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 2013, 42, 992–1001. [Google Scholar]
- Steptoe, A.; Breeze, E.; Banks, J.; Nazroo, J. Cohort profile: The English Longitudinal Study of Ageing. Int. J. Epidemiol. 2013, 42, 1640–1648. [Google Scholar] [CrossRef] [PubMed]
- Kearney, P.M.; Cronin, H.; O’Regan, C.; Kamiya, Y.; Savva, G.M.; Whelan, B.; Kenny, R. Cohort profile: The Irish Longitudinal Study on Ageing. Int. J. Epidemiol. 2011, 40, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Queen’s University Belfast—Centre for Public Health. Northern Ireland Cohort Longitudinal Study of Ageing (NICOLA). Available online: http://www.qub.ac.uk/sites/NICOLA/ (accessed on 10 January 2018).
- Collerton, J.; Barrass, K.; Bond, J.; Eccles, M.; Jagger, C.; James, O.; Martin-Ruiz, C.; Robinson, L.; von Zglinicki, T.; Kirkwood, T. The Newcastle 85+ study: Biological, clinical and psychosocial factors associated with healthy ageing: Study protocol. BMC Geriatr. 2007, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Hayman, K.J.; Kerse, N.; Dyall, L.; Kepa, M.; The, R.; Wham, C.; Clair, V.W.; Wiles, J.; Keeling, S.; Connolly, M.J.; et al. Life and living in advanced age: A cohort study in New Zealand—e Puāwaitanga o Nga Tapuwae Kia Ora Tonu, LiLACS NZ: Study protocol. BMC Geriatr. 2012, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Office for National Statistics. Leading Causes of Death in England and Wales (revised 2015). Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatistics/leadingcausesofdeathinenglandandwalesrevised2015 (accessed on 15 January 2018).
- Chernoff, R. Nutrition and health promotion in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Pahor, M.; Tylavsky, F.; Kritchevsky, S.B.; Cauley, J.A.; Newman, A.B.; Blunt, B.A.; Harris, T.B. One- and two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J. Appl. Physiol. (1985) 2003, 94, 2368–2374. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.A.; Manini, T.M.; Paton, C.M.; Yamada, Y.; Everhart, J.E.; Cummings, S.; Mackey, D.C.; Newman, A.B.; Glynn, N.W.; Tylavsky, F.; et al. Longitudinal change in energy expenditure and effects on energy requirements of the elderly. Nutr. J. 2013, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Stanner, S.; Thompson, R.; Buttriss, J.L. Healthy Ageing: The Role of Nutrition and Lifestyle; Wiley-Blackwell on behalf of British Nutrition Foundation: London, UK, 2009. [Google Scholar]
- Lara, J.; Hobbs, N.; Moynihan, P.J.; Meyer, T.D.; Adamson, A.J.; Errington, L.; Rochester, L.; Sniehotta, F.F.; White, M.; Mathers, J.C. Effectiveness of dietary interventions among adults of retirement age: A systematic review and meta-analysis of randomized controlled trials. BMC Med. 2014, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet quality as assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An updated systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 2018, 118. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nutrition for Older Persons. Available online: http://www.who.int/nutrition/topics/ageing/en/ (accessed on 10 January 2018).
- World Cancer Research Fund. Preventing Cancer—What Can Increase Your Risk of Cancer? Poor Diet and Cancer Risk. Available online: https://www.wcrf-uk.org/uk/preventing-cancer/what-can-increase-your-risk-cancer/poor-diet-and-cancer-risk (accessed on 15 February 2018).
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ewaschuk, J.B.; Almasud, A.; Mazurak, V.C. Role of n-3 fatty acids in muscle loss and myosteatosis. Appl. Physiol. Nutr. Metab. 2014, 39, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Stratton, R.J.; Green, C.J.; Elia, M. Disease-Related Malnutrition: An Evidence–based Approach to Treatment; CABI Publishing: Oxon, UK, 2003. [Google Scholar]
- Cereda, E.; Pedrolli, C.; Klersy, C.; Bonardi, C.; Quarleri, L.; Cappello, S.; Turri, A.; Rondanelli, M.; Caccialanza, R. Nutritional status in older persons according to healthcare setting: A systematic review and meta-analysis of prevalence data using MNA®. Clin. Nutr. 2016, 35, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Aspray, T.; Hill, T.; Davies, K.; Collerton, J.; Martin-Ruiz, C.; von Zglinicki, T.; Kirkwood, T.B.; Mathers, J.C.; Jagger, C. 25-hydroxyvitamin D and increased all-cause mortality in very old women: The Newcastle 85+ study. J. Intern. Med. 2015, 277, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology 2012, 79, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Hill, T.R.; Kirkwood, T.B.; Davies, K.; Collerton, J.; Martin-Ruiz, C.; von Zglinicki, T.; Saxby, B.K.; Wesnes, K.A.; Collerton, D.; et al. Serum 25-hydroxyvitamin D and cognitive decline in the very old: The Newcastle 85+ Study. Eur. J. Neurol. 2015, 22, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Hill, T.R.; Davies, K.; Jagger, C.; Adamson, A.; Siervo, M.; Kirkwood, T.B.; Mathers, J.C.; Sayer, A.A. Vitamin D status, muscle strength and physical performance decline in very old adults: A prospective study. Nutrients 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Barnard, K.; Colon-Emeric, C. Extraskeletal effects of vitamin D in older adults: Cardiovascular disease, mortality, mood, and cognition. Am. J. Geriatr. Pharmacother. 2010, 8, 4–33. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.; Hoey, L.; Hughes, C.F.; Ward, M.; McNulty, H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, N.; Granic, A.; Mathers, J.C.; Martin-Ruiz, C.; Wesnes, K.A.; Seal, C.J.; Hill, T.R.; Jagger, C. One-carbon metabolism biomarkers and cognitive decline in the very old: The Newcastle 85+ Study. J. Am. Med. Dir. Assoc. 2017, 18, e19–e27. [Google Scholar]
- Paddon-Jones, D.; Leidy, H. Dietary protein and muscle in older persons. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Nowson, C.; O’Connell, S. Protein requirements and recommendations for older people: A review. Nutrients 2015, 7, 6874–6899. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Mendonça, N.; Sayer, A.A.; Hill, T.R.; Davies, K.; Adamson, A.; Siervo, M.; Mathers, J.C.; Jagger, C. Low protein intake, muscle strength and physical performance in the very old: The Newcastle 85+ Study. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.M.; Granic, A.; Davies, K.; Kirkwood, T.B.; Jagger, C.; Sayer, A.A. Prevalence and incidence of sarcopenia in the very old: Findings from the Newcastle 85+ Study. J. Cachexia Sarcopenia Muscle 2017, 8, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T.; Avlund, K.; Suominen, H.; Schroll, M.; Frändin, K.; Pertti, E. Muscle strength as a predictor of onset of ADL dependence in people aged 75 years. Aging Clin. Exp. Res. 2002, 4, 10–15. [Google Scholar]
- Granic, A.; Davies, K.; Jagger, C.; Dodds, R.M.; Kirkwood, T.B.L.; Sayer, A.A. Initial level and rate of change in grip strength predict all-cause mortality in very old adults. Age Ageing 2017, 46, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Ross, R. Linking age-related changes in skeletal muscle mass and composition with metabolism and disease. J. Nutr. Health Aging 2005, 9, 408–419. [Google Scholar] [PubMed]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Shepard, D.S.; Katzmarzyk, P.T.; Roubenoff, R. The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 2004, 52, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Stokes, K.A.; Churchward-Venne, T.A.; Moore, D.R.; Baker, S.K.; Smith, K.; Atherton, P.J.; Phillips, S.M. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J. Clin. Endocrinol. Metab. 2013, 98, 2604–2612. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.T.; Dirks, M.L.; van Loon, L.J. Skeletal muscle atrophy during short-term disuse: Implications for age-related sarcopenia. Ageing Res. Rev. 2013, 12, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R. Keeping older muscle “young” through dietary protein and physical activity. Adv. Nutr. 2014, 5, 599S–607S. [Google Scholar] [CrossRef] [PubMed]
- Deer, R.R.; Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J.M.; Shikany, J.M.; Thomson, C.A. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr. Clin. Pract. 2013, 28, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.; Rhea, M.; Sen, A.; Gordon, P.M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 2010, 9, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.; Sen, A.; Gordon, P. Influence of resistance exercise on lean body mass in aging adults: A meta-analysis. Med. Sci. Sports Exerc. 2011, 43, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Churchward-Venne, T.A.; Holwerda, A.M.; Phillips, S.M.; van Loon, L.J. What is the optimal amount of protein to support post-exercise skeletal muscle reconditioning in the older adult? Sports Med. 2016, 46, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Phillips, S.M. Interactions between exercise and nutrition to prevent muscle waste during ageing. Br. J. Clin. Pharmacol. 2013, 75, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Koopman, R.; Walrand, S.; Beelen, M.; Gijsen, A.P.; Kies, A.K.; Boirie, Y.; Saris, W.H.; van Loon, L.J. Dietary protein digestion and absorption rates and the subsequent postprandial muscle protein synthetic response do not differ between young and elderly men. J. Nutr. 2009, 139, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.; Rémond, D.; van Loon, L.J. The muscle protein synthetic response to food ingestion. Meat Sci. 2015, 109, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Intervention to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.T.; Gorissen, S.H.; Pennings, B.; Koopman, R.; Groen, B.B.; Verdijk, L.B.; van Loon, L.J. Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PLoS ONE 2015, 10, e0140903. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, D.; Smith, K.; Babraj, J.; Leese, G.; Waddell, T.; Atherton, P.; Wackerhage, H.; Taylor, P.M.; Rennie, M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005, 19, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Symons, T.B.; Sheffield-Moore, M.; Mamerow, M.M.; Wolfe, R.R.; Paddon-Jones, D. The anabolic response to resistance exercise and a protein-rich meal is not diminished by age. J. Nutr. Health Aging 2011, 15, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Verlaan, S.; Maier, A.B.; Bauer, J.M.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults—The PROVIDE study. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Tieland, M.; Dirks, M.L.; van der Zwaluw, N.; Verdijk, L.B.; van de Rest, O.; de Groot, L.C.; van Loon, L.J. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2012, 13, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids; National Academy Press: Washington, DC, USA, 2005.
- Rand, W.M.; Pellett, P.L.; Young, V.R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am. J. Clin. Nutr. 2003, 77, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Courtney-Martin, G.; Ball, R.O.; Pencharz, P.B.; Elango, R. Protein requirements during aging. Nutrients 2016, 8, 492. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; McCabe, G.P.; Elango, R.; Pencharz, P.B.; Ball, R.O.; Campbell, W.W. Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique. Am. J. Clin. Nutr. 2014, 99, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Campbell, W.W.; Dwyer, J.T.; Johnson, M.A.; Jensen, G.L.; Morley, J.E.; Wolfe, R.R. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN expert group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE study group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Berner, L.A.; Becker, G.; Wise, M.; Doi, J. Characterization of dietary protein among older adults in the United States: Amount, animal sources, and meal patterns. J. Acad. Nutr. Diet. 2013, 113, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Rossi, M.; Campbell, K.L.; Sencion, G.L.; Ärnlöv, J.; Cederholm, T.; Sjögren, P.; Risérus, U.; Lindholm, B.; Carrero, J.J. Excess protein intake relative to fiber and cardiovascular events in elderly men with chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J.M.; Wertheim, B.C.; LaCroix, A.Z.; Prentice, R.L.; Neuhouser, M.L.; Tinker, L.F.; Kritchevsky, S.; Shikany, J.M.; Eaton, C.; Chen, Z.; et al. Biomarker-calibrated protein intake and physical function in the Women’s Health Initiative. J. Am. Geriatr. Soc. 2013, 61, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Kingston, A.; Collerton, J.; Davies, K.; Bond, J.; Robinson, L.; Jagger, C. Losing the ability in activities of daily living in the oldest old: A hierarchic disability scale from the Newcastle 85+ study. PLoS ONE 2012, 7, e31665. [Google Scholar] [CrossRef] [PubMed]
- Collerton, J.; Jagger, C.; Yadegarfar, M.E.; Davies, K.; Parker, S.G.; Robinson, L.; Kirkwood, T.B. Deconstructing complex multimorbidity in the very old: Findings from the Newcastle 85+ study. Biomed. Res. Int. 2016, 2016, 8745670. [Google Scholar] [CrossRef] [PubMed]
- Yarnall, A.J.; Sayer, A.A.; Clegg, A.; Rockwood, K.; Parker, S.; Hindle, J.V. New horizons in multimorbidity in older adults. Age Ageing 2017, 46, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, N.; Hill, T.R.; Granic, A.; Davies, K.; Collerton, J.; Mathers, J.C.; Siervo, M.; Wrieden, W.L.; Seal, C.J.; Kirkwood, T.B.; et al. Macronutrient intake and food sources in the very old: Analysis of the Newcastle 85+ Study. Br. J. Nutr. 2016, 115, 2170–2180. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, N.; Hill, T.R.; Granic, A.; Davies, K.; Collerton, J.; Mathers, J.C.; Siervo, M.; Wrieden, W.L.; Seal, C.J.; Kirkwood, T.B.; et al. Micronutrient intake and food sources in the very old: Analysis of the Newcastle 85+ Study. Br. J. Nutr. 2016, 116, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, N.; Granic, A.; Mathers, J.C.; Hill, T.R.; Siervo, M.; Adamson, A.J.; Jagger, C. Prevalence and determinants of low protein intake in very old adults: Insights from the Newcastle 85+ Study. Eur. J. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.R.; Mendonça, N.; Granic, A.; Siervo, M.; Jagger, C.; Seal, C.J.; Kerse, N.; Wham, C.; Adamson, A.J.; Mathers, J.C. What do we know about the nutritional status of the very old? Insights from three cohorts of advanced age from the UK and New Zealand. Proc. Nutr. Soc. 2016, 75, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.M.; Reginster, J.Y.; Rizzoli, R.; Shaw, S.C.; Kanis, J.A.; Bautmans, I.; Bischoff-Ferrari, H.; Bruyère, O.; Cesari, M.; Dawson-Hughes, B.; et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.J. Nutrition and sarcopenia: Evidence for an interaction. Proc. Nutr. Soc. 2012, 71, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Mithal, A.; Bonjour, J.P.; Boonen, S.; Burckhardt, P.; Degens, H.; El Hajj Fuleihan, G.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R.; et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 2013, 24, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Miccheli, A.; Landi, F.; Bossola, M.; Cesari, M.; Leeuwenburgh, C.; Sieber, C.C.; Bernabei, R.; Marzetti, E. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J. Frailty Aging 2013, 2, 38–53. [Google Scholar] [PubMed]
- Denison, H.J.; Cooper, C.; Sayer, A.A.; Robinson, S.M. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interv. Aging 2015, 10, 859–869. [Google Scholar] [PubMed]
- Rondanelli, M.; Faliva, M.; Monteferrario, F.; Peroni, G.; Repaci, E.; Allieri, F.; Perna, S. Novel insights on nutrient management of sarcopenia in elderly. Biomed. Res. Int. 2015, 2015, 524948. [Google Scholar] [CrossRef] [PubMed]
- Bosaeus, I.; Rothenberg, E. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia. Proc. Nutr. Soc. 2016, 75, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; D’Angelo, E.; Sisto, A.; Marzetti, E. Protein intake and muscle health in old age: From biological plausibility to clinical evidence. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- McClure, R.; Villani, A. Mediterranean Diet attenuates risk of frailty and sarcopenia: New insights and future directions. J. Cachexia Sarcopenia Muscle Clin. Rep. 2017, 2, e00045. [Google Scholar] [CrossRef]
- Penn, L.; Boeing, H.; Boushey, C.; Dragsted, L.; Kaput, J.; Scalbert, A.; Welch, A.; Mathers, J. Assessment of dietary intake: NuGO symposium report. Genes Nutr. 2010, 5, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.J.; Fave, G.; Beckmann, M.; Lin, W.; Tailliart, K.; Xie, L.; Mathers, J.C.; Draper, J. Use of mass spectrometry fingerprinting to identify urinary metabolites after consumption of specific foods. Am. J. Clin. Nutr. 2011, 94, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Adamson, A.J.; Collerton, J.; Davies, K.; Foster, E.; Jagger, C.; Stamp, E.; Mathers, J.C.; Kirkwood, T.; Newcastle 85+ Study Core Team. Nutrition in advanced age: Dietary assessment in the Newcastle 85+ study. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 1), S6–S18. [Google Scholar] [CrossRef] [PubMed]
- Smithers, G.; Finch, S.; Doyle, W.; Lowe, C.; Bates, C.J.; Prentice, A.; Clarke, P.C. The National Diet and Nutrition Survey: People aged 65 years and over. Nutr. Food Sci. 1998, 98, 133–134. [Google Scholar] [CrossRef]
- European Prospective Investigation of Cancer. The EPIC-Oxford Study. Available online: http://www.epic-oxford.org/ (accessed on 11 January 2018).
- Ocke, M.C.; Buurma-Rethans, E.J.M.; de Boer, E.J.; Wilson-van den Hooven, C.; Etemad-Ghameslou, Z.; Drijvers, J.; van Rossum, C.T.M. Diet of community-dwelling older adults: Dutch National Food Consumption Survey Older adults 2010–2012. De voeding van zelfstandig-wonende ouderen: Nederlandse Voedselconsumptiepeiling Ouderen 2010–2012: Rijksinstituut voor Volksgezondheid en Milieu RIVM, 2013. Available online: http://www.rivm.nl/dsresource?objectid=0446f97a-7505-46a0-adb7-719c740410ab&type=org&disposition=inline (accessed on 25 January 2018).
- Bartali, B.; Salvini, S.; Turrini, A.; Lauretani, F.; Russo, C.R.; Corsi, A.M.; Bandinelli, S.; D’Amicis, A.; Palli, D.; Guralnik, J.M.; et al. Age and disability affect dietary intake. J. Nutr. 2003, 133, 2868–2873. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Kreuel, K.; Heseker, H.; Stehle, P. Energy and nutrient intake of young-old, old-old and very-old elderly in Germany. Eur. J. Clin. Nutr. 2004, 58, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Fabian, E.; Elmadfa, I. Nutritional situation of the elderly in the European Union: Data of the European Nutrition and Health Report (2004). Ann. Nutr. Metab. 2008, 52 (Suppl. 1), 57–61. [Google Scholar] [CrossRef] [PubMed]
- Wham, C.; Teh, R.; Moyes, S.A.; Rolleston, A.; Muru-Lanning, M.; Hayman, K.; Adamson, A.; Kerse, N. Macronutrient intake in advanced age: Te Puāwaitanga o Ngā Tapuwae Kia ora Tonu, Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Br. J. Nutr. 2016, 116, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Wham, C.; Teh, R.; Moyes, S.A.; Rolleston, A.; Muru-Lanning, M.; Hayman, K.; Kerse, N.; Adamson, A. Micronutrient intake in advanced age: Te Puāwaitanga o Ngā Tapuwae Kia ora Tonu, Life and living in advanced age: A cohort study in New Zealand (LiLACS NZ). Br. J. Nutr. 2016, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Elia, M.; Stratton, R.J. Geographical inequalities in nutrient status and risk of malnutrition among English people aged 65 y and older. Nutrition 2005, 21, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Elia, M.; Russell, C. Combating Malnutrition: Recommendations for Action: Report from the Advisory Group on Malnutrition; BAPEN: Worcester, UK, 2009. [Google Scholar]
- Brownie, S. Why are elderly individuals at risk of nutritional deficiency? Int. J. Nurs. Pract. 2006, 12, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Bloom, I.; Edwards, M.; Jameson, K.A.; Syddall, H.E.; Dennison, E.; Gale, C.R.; Baird, J.; Cooper, C.; Aihie Sayer, A.; Robinson, S. Influences on diet quality in older age: The importance of social factors. Age Ageing 2017, 46, 277–283. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization and Tufts University School of Nutrition and Policy. Keep Fit for Life—Meeting the Nutritional Needs of Older Persons; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Methven, L.; Allen, V.J.; Withers, C.A.; Gosney, M.A. Ageing and taste. Proc. Nutr. Soc. 2012, 71, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Boltong, A.; Keast, R. The influence of chemotherapy on taste perception and food hedonics: A systematic review. Cancer Treat. Rev. 2012, 38, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Halford, J.C.G.; Harrold, J.A.; Lawton, C.L.; Blundell, J.E. Serotonin (5-HT) drugs: Effects on appetite expression and use for the treatment of obesity. Curr. Drug Targets 2005, 6, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Akamine, D.; Filho, M.K.; Peres, C.M. Drug-nutrient interactions in elderly people. Curr. Opin. Clin. Nutr. Metab. Care. 2007, 10, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.A. If high folic acid aggravates vitamin B12 deficiency what should be done about it? Nutr. Rev. 2007, 65, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.M. Factors in aging that effect the bioavailability of nutrients. J. Nutr. 2001, 131, 1359s–1361s. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.F.; Ward, M.; Hoey, L.; McNulty, H. Vitamin B12 and ageing: Current issues and interaction with folate. Ann. Clin. Biochem. 2013, 50, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.R.; Aspray, T.J.; Francis, R.M. Vitamin D and bone health outcomes in older age. Proc. Nutr. Soc. 2013, 72, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Inzitari, M.; Doets, E.; Bartali, B.; Benetou, V.; Di Bari, M.; Visser, M.; Volpato, S.; Gambassi, G.; Topinkova, E.; De Groot, L.; et al. Nutrition in the age-related disablement process. J. Nutr. Health Aging 2011, 15, 599–604. [Google Scholar] [CrossRef] [PubMed]
- The Scientific Advisory Committee on Nutrition (SACN). Dietary Reference Values for Energy; Public Health England: London, UK, 2011.
- Department of Health: Committee on Medical Aspects of Food Policy (COMA). Report on Health and Social Subjects 41: Dietary Reference Values for Food Energy and Nutrients for the United Kingdom; Department of Health: London, UK, 1991.
- Roman Viñas, B.; Ribas Barba, L.; Ngo, J.; Gurinovic, M.; Novakovic, R.; Cavelaars, A.; de Groot, L.C.; van’t Veer, P.; Matthys, C.; Serra Majem, L. Projected prevalence of inadequate nutrient intakes in Europe. Ann. Nutr. Metab. 2011, 59, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.; Luiking, Y.C.; de Groot, L.C. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Bates, C.J.; Prentice, A.; van der Pols, J.C.; Walmsley, C.; Pentieva, K.D.; Finch, S.; Smithers, G.; Clarke, P.C. Estimation of the use of dietary supplements in the National Diet and Nutrition Survey: People aged 65 years and over. An observed paradox and a recommendation. Eur. J. Clin. Nutr. 1998, 52, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Bates, C.J.; Prentice, A.; Cole, T.J.; van der Pols, J.C.; Doyle, W.; Finch, S.; Smithers, G.; Clarke, P.C. Micronutrients: Highlights and research challenges from the 1994-5 National Diet and Nutrition Survey of people aged 65 years and over. Br. J. Nutr. 1999, 82, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Public Health England and Food Standard Agency. NDNS Results from Year 1 to 4 Combined of the Rolling Programme for 2008 and 2009 to 2011 and 2012: Report; Bates, B., Lennox, A., Prentice, A., Bates, C., Page, P., Nicholson, S., Swan, G., Eds.; Public Health England: London, UK, 2014. Available online: https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-results-from-years-1-to-4-combined-of-the-rolling-programme-for-2008-and-2009-to-2011-and-2012 (assessed on 20 January 2018).
- Mendonça, N.; Mathers, J.C.; Adamson, A.J.; Martin-Ruiz, C.; Seal, C.J.; Jagger, C.; Hill, T.R. Intakes of folate and vitamin B12 and biomarkers of status in the very old: The Newcastle 85+ study. Nutrients 2016, 8, 604. [Google Scholar] [CrossRef] [PubMed]
- Update on Vitamin D: Position Statement by the SACN; Scientific Advisory Committee on Nutrition: London, UK, 2007.
- Hirani, V.; Tull, K.; Ali, A.; Mindell, J. Urgent action needed to improve vitamin D status among older people in England! Age Ageing 2010, 39, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bruyere, O.; Slomian, J.; Beaudart, C.; Buckinx, F.; Cavalier, E.; Gillain, S.; Petermans, J.; Reginster, J.Y. Prevalence of vitamin D inadequacy in European women aged over 80 years. Arch. Gerontol. Geriatr. 2014, 59, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.R.; Granic, A.; Davies, K.; Collerton, J.; Martin-Ruiz, C.; Siervo, M.; Mathers, J.C.; Adamson, A.J.; Francis, R.M.; Pearce, S.H.; et al. Serum 25-hydroxyvitamin d concentration and its determinants in the very old: The Newcastle 85+ study. Osteoporos. Int. 2016, 27, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.J.; Kerse, N.; Hayman, K.J.; Moyes, S.A.; Teh, R.O.; Kepa, M.; Pillai, A.; Dyall, L. Vitamin D status of Māori and non-Māori octogenarians in New Zealand: A cohort study (LiLACS NZ). Asia Pac. J. Clin. Nutr. 2016, 25, 885–897. [Google Scholar] [PubMed]
- Wicherts, I.S.; van Schoor, N.M.; Boeke, A.J.; Visser, M.; Deeg, D.J.; Smit, J.; Knol, D.L.; Lips, P. Vitamin D status predicts physical performance and its decline in older persons. J. Clin. Endocrinol. Metab. 2007, 92, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Tooze, J.A.; Hausman, D.B.; Johnson, M.A.; Nicklas, B.J.; Miller, M.E.; Neiberg, R.H.; Marsh, A.P.; Newman, A.B.; Blair, S.N.; et al. Change in 25-hydroxyvitamin D and physical performance in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.Y.; Bruyère, O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [PubMed]
- Rejnmark, L. Effects of vitamin d on muscle function and performance: A review of evidence from randomized controlled trials. Ther. Adv. Chronic. Dis. 2011, 2, 25–37. [Google Scholar] [CrossRef] [PubMed]
- The Scientific Advisory Committee on Nutrition (SACN)—GOV.UK. Available online: https://www.gov. uk/government/groups/scientific-advisory-committee-on-nutrition (accessed on 23 January 2018).
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Karras, S.N.; Bischoff-Ferrari, H.A.; Annweiler, C.; Boucher, B.J.; Juzeniene, A.; Garland, C.F.; Holick, M.F. Do studies reporting ‘U’-shaped serum 25-hydroxyvitamin D-health outcome relationships reflect adverse effects? Dermatoendocrinol. 2016, 8, e1187349. [Google Scholar] [CrossRef] [PubMed]
- Collerton, J.; Davies, K.; Jagger, C.; Kingston, A.; Bond, J.; Eccles, M.P.; Robinson, L.A.; Martin-Ruiz, C.; von Zglinicki, T.; James, O.F.; et al. Health and disease in 85 year olds: Baseline findings from the Newcastle 85+ cohort study. BMJ 2009, 339, b4904. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.; Kingston, A.; Robinson, L.; Hughes, J.; Hunt, J.M.; Barker, S.A.; Edwards, J.; Collerton, J.; Jagger, C.; Kirkwood, T.B. Improving retention of very old participants in longitudinal research: Experiences from the Newcastle 85+ study. PLoS ONE 2014, 9, e108370. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Atkinson, M. A Photographic Atlas of Food Portion Sizes; Ministry of Agriculture, Fisheries and Farming (MAFF) Publications: London, UK, 1997.
- Food Standards Agency. McCance and Widdowson’s the Composition of Foods, 6th ed.; Royal Society of Chemistry: Cambridge, UK, 2002.
- Granic, A.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Jagger, C. Dietary patterns and socioeconomic status in the very old: The Newcastle 85+ study. PLoS ONE 2015, 10, e0139713. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.K.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipid 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Granic, A.; Jagger, C.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Sayer, A.A. Effect of dietary patterns on muscle strength and physical performance in the very old: Findings from the Newcastle 85+ study. PLoS ONE 2016, 11, e0149699. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Healthspan 2014, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Collino, M.; Mastrocola, R.; Nigro, D.; Chiazza, F.; Aragno, M.; D’Antona, G.; Minetto, M.A. Variability in myosteatosis and insulin resistance induced by high-fat diet in mouse skeletal muscles. Biomed. Res. Int. 2014, 2014, 569623. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, I.; Gousias, P.; Jones, K.S.; Prentice, A. Prediction of winter vitamin D status and requirements in the UK population based on 25(OH) vitamin D half-life and dietary intake data. J. Steroid Biochem. Mol. Biol. 2016, 164, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jacobs, E.J.; McCullough; Rodriguez, C.; Thun, M.J.; Calle, E.E.; Flanders, W.D. Comparing methods for accounting for seasonal variability in a biomarker when only a single sample is available: Insights from simulation based on serum 25-hydroxyvitamin D. Am. J. Epidemiol. 2009, 170, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Matheï, C.; Van Pottelbergh, G.; Vaes, B.; Adriaensen, W.; Gruson, D.; Degryse, J.M. No relation between vitamin D status and physical performance in the oldest old: Results from the Belfrail study. Age Ageing 2013, 42, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Sohl, E.; de Jongh, R.T.; Heijboer, A.C.; Swart, K.M.; Brouwer-Brolsma, E.M.; Enneman, A.W.; de Groot, C.P.; van der Velde, N.; Dhonukshe-Rutten, R.A.; Lips, P.; et al. Vitamin D status is associated with physical performance: The results of three independent cohorts. Osteoporos. Int. 2013, 24, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Sivakumaran, S.; Huffman, L.; Sivakumaran, S. The New Zealand Food Composition Database: A useful tool for assessing New Zealanders’ nutrient intake. Food Chem. 2018, 238, 101–110. [Google Scholar] [CrossRef] [PubMed]
- The Scientific Advisory Committee on Nutrition (SACN). The Scientific Advisory Committee on Nutrition Narrative Synthesis of Health Effects of Potential Dietary Fibre Components; Public Health England: London, UK, 2008.
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand; NHRMC: Camberra, New Zealand, 2006.
- Wham, C.A.; Teh, R.; Moyes, S.; Dyall, L.; Kepa, M.; Hayman, K.; Kerse, N. Health and social factors associated with nutrition risk: Results from life and living in advanced age: A cohort study in New Zealand (LiLACS NZ). J. Nutr. Health Aging 2015, 19, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Lara, J.; Godfrey, A.; Evans, E.; Heaven, B.; Brown, L.J.; Barron, E.; Rochester, L.; Meyer, T.D.; Mathers, J.C. Towards measurement of the healthy ageing phenotype in lifestyle-based intervention studies. Maturitas 2013, 76, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Lara, J.; Cooper, R.; Nissan, J.; Ginty, A.T.; Khaw, K.T.; Deary, I.J.; Lord, J.M.; Kuh, D.; Mathers, J.C. A proposed panel of biomarkers of healthy ageing. BMC Med. 2015, 13, 222. [Google Scholar] [CrossRef] [PubMed]
- Van Bemmel, T.; Gussekloo, J.; Westendorp, R.G.; Blauw, G.J. In a population-based prospective study, no association between high blood pressure and mortality after age 85 years. J. Hypertens. 2006, 24, 287–292. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund and American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; AICR: Washington, DC, USA, 2007. Available online: http://www.aicr.org/assets/docs/pdf/reports/Second_Expert_Report.pdf (accessed on 29 January 2018).
Study | Study Characteristics and Population | Dietary Assessment | Other Assessments |
---|---|---|---|
NDNS 65+ | Carried out during 1994–1995 in the UK; included two nationally-representative samples of adults aged ≥ 65 (community-dwelling and living in institutions); 459 (172 men and 287 women) aged ≥ 85 completed four-day weighted diet record [113]. | Four-day weighted diet records | Health background questionnaire and blood samples |
EPIC-Oxford | Started in 1993 in Oxford, UK; designed to investigate the relationship between diet and cancer; 1283 (411 men and 872 women) aged ≥ 80 completed the FFQ by the third follow-up (2010–2014) [114]. | FFQ | Health and lifestyle questionnaire, and blood samples |
DNFCS | Conducted in the Netherlands in 2010–2012; included nationally-representative sample of older adults aged ≥ 70; 225 (103 men and 122 women) aged ≥ 80 completed both 24-h dietary recall [115]. | Two 24-h dietary recall | Heath background questionnaires anthropometric measures |
InCHIANTI | Conducted in 1998 in Tuscany, Italy; included participants aged 21 to 103; 1436 completed the FFQ; 170 (60 men and 113 women) were aged ≥ 85 and had dietary data [116]. | FFQ | Background questionnaire (sociodemographic, lifestyle, function) |
GNS | German nationally-representative study of community-dwelling older adults; conducted on behalf of the German Ministry of Health in 1998; 287 (89 men and 198 women) aged ≥ 85 had complete dietary data [117]. | Three-day dietary records | Background questionnaire (sociodemographic, lifestyle) |
ANS | Austrian nationally-representative sample of older adults; survey conducted in 2003 had 115 older adults aged ≥ 85 (22 men and 93 women) [118]. | Three-day dietary records | Heath background questionnaire |
NC85+ * | A longitudinal, population-based study; recruited over 1000 participants aged 85 from Newcastle and North Tyneside, UK in 2006; 845 (319 men and 526 women) had complete multidimensional health assessment and medical records review; 793 (302 men and 491 women) had complete dietary data [97,98]. | Two 24-h dietary recall | Multidimensional health and functioning assessment; medical records review |
LiLACS NZ * | Population-based cohort study of 937 very old adults from the Bay of Plenty and Rotorua region, New Zealand, recruited in 2010 (421 Māori aged 80–90 and 516 non-Maori participants aged ≥ 85); 216 Maori (92 men and 124 women) and 362 non-Māori (172 men and 190 women) had complete dietary data [119,120]. | Two 24-h dietary recall | Background health and functioning questionnaire; blood samples |
Cohort | Men | Women | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy | Carb | Fat | Protein | Fibre | Folate | B12 | D | Ca | Iron | Energy | Carb | Fat | Protein | Fibre | Folate | B12 | D | Ca | Iron | |
MJ/d | % | % | % | g/day | μg/day | μg/day | μg/day | mg/day | mg/day | MJ/day | % | % | % | g/day | μg/day | μg/day | μg/day | mg/d | mg/d | |
NDNS 65+ | 6.99 3 | 48.5 | 36.3 | 15.2 | 11.4 4 | 219 | 3.8 | 2.8 | 717 | 9.7 | 5.60 3 | 48.4 | 36.8 | 14.5 | 9.4 4 | 170 | 2.9 | 2.0 | 619 | 7.5 |
EPIC 1 | 9.84 | 49.7 | 31.4 | 15.5 | 24.5 4 | 466 | 7.5 | 4.2 | 1157 | 18.1 | 9.02 | 50.3 | 31.5 | 16.3 | 24.0 4 | 461 | 7.5 | 4.0 | 1147 | 17.0 |
DNFCS | 7.40 | 41.4 | 34.0 | 16.4 | 20.0 | 46 5 | 4.9 | 3.9 | 1016 | 9.6 | 7.30 | 41.0 | 35.0 | 15.6 | 16.2 | 34 5 | 4.4 | 2.9 | 2030 | 8.3 |
InCHIANTI 2 | 7.38 | 50.0 | 29.0 | 16.0 | 17.2 | 228 | - | - | 778 | 11.5 | 6.36 | 50.0 | 32.0 | 16.0 | 15.3 | 200 | - | - | 701 | 9.6 |
GNS | 9.34 | 44.2 | 33.2 | 16.3 | 23.7 | 123 6 | - | 3.8 | 721 | 13.3 | 8.07 | 42.6 | 35.0 | 16.2 | 19.9 | 106 6 | - | 2.7 | 729 | 12.6 |
ANS | 7.40 | 44.0 | 40.0 | 14.0 | 15.0 | 174 6 | 4.0 | 3.4 | 642 | 10.0 | 7.10 | 43.0 | 40.0 | 16.0 | 16.0 | 166 6 | 3.9 | 3.1 | 649 | 11.1 |
NC85+ | 7.73 3 | 46.8 | 36.4 | 15.9 | 11.3 4 | 245 | 3.4 | 2.3 | 829 | 10.5 | 6.15 3 | 46.8 | 37.2 | 15.5 | 9.3 4 | 189 | 2.6 | 1.8 | 683 | 7.8 |
LiLACS NZ 7 | 7.90 3 | 44.3 | 36.2 | 15.6 | 22.8 | 245 | 3.6 | 4.1 | 731 | 11.6 | 6.27 3 | 46.4 | 37.2 | 15.3 | 20.4 | 215 | 2.6 | 3.4 | 679 | 9.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granic, A.; Mendonça, N.; Hill, T.R.; Jagger, C.; Stevenson, E.J.; Mathers, J.C.; Sayer, A.A. Nutrition in the Very Old. Nutrients 2018, 10, 269. https://doi.org/10.3390/nu10030269
Granic A, Mendonça N, Hill TR, Jagger C, Stevenson EJ, Mathers JC, Sayer AA. Nutrition in the Very Old. Nutrients. 2018; 10(3):269. https://doi.org/10.3390/nu10030269
Chicago/Turabian StyleGranic, Antoneta, Nuno Mendonça, Tom R. Hill, Carol Jagger, Emma J. Stevenson, John C. Mathers, and Avan A. Sayer. 2018. "Nutrition in the Very Old" Nutrients 10, no. 3: 269. https://doi.org/10.3390/nu10030269
APA StyleGranic, A., Mendonça, N., Hill, T. R., Jagger, C., Stevenson, E. J., Mathers, J. C., & Sayer, A. A. (2018). Nutrition in the Very Old. Nutrients, 10(3), 269. https://doi.org/10.3390/nu10030269