Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Food Data
2.2. Nutrient Composition of Foods
2.3. Identification of Dietary Patterns
2.4. Nutrient Adequacy of the Diet
2.5. Diversity of the Protein Intake
2.6. Characterization of Dietary Patterns
3. Results
3.1. Identification of Dietary Protein Patterns
3.2. Characterization of Dietary Protein Patterns
4. Discussion
4.1. Identification of Dietary Protein Patterns
4.2. Characterization of Dietary Patterns
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullee, A.; Vermeire, L.; Vanaelst, B.; Mullie, P.; Deriemaeker, P.; Leenaert, T.; De Henauw, S.; Dunne, A.; Gunter, M.J.; Clarys, P.; et al. Vegetarianism and meat consumption: A comparison of attitudes and beliefs between vegetarian, semi-vegetarian, and omnivorous subjects in belgium. Appetite 2017, 114, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E.J. Flexitarian diets and health: A review of the evidence-based literature. Front. Nutr. 2016, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Conrad, Z.; Karlsen, M.; Chui, K.; Jahns, L. Diet quality on meatless days: National health and nutrition examination survey (NHANES), 2007–2012. Public Health Nutr. 2017, 20, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Clifton, P. 20 - vegetarian diets and the risk of type 2 diabetes. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Mariotti, F., Ed.; Academic Press: Cambridge, CA, USA, 2017; pp. 355–367. [Google Scholar]
- Mann, J. 23-ischemic heart disease in vegetarians and those consuming a predominantly plant-based diet. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Mariotti, F., Ed.; Academic Press: Cambridge, CA, USA, 2017; pp. 415–427. [Google Scholar]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.J. The nutritional value of plant-based diets in relation to human amino acid and protein requirements. Proc. Nutr. Soc. 1999, 58, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Tome, D. Digestibility issues of vegetable versus animal proteins: Protein and amino acid requirements–functional aspects. Food Nutr. Bull. 2013, 34, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Fulgoni, V.L.; Heaney, R.P.; Nicklas, T.A.; Slavin, J.L.; Weaver, C.M. Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy. Am. J. Clin. Nutr. 2015, 101, 1346S–1352S. [Google Scholar] [CrossRef] [PubMed]
- Anses. Updating of the PNNS guidelines: Revision of the food-based dietary guidelines. Anses Opinion—Collective Expert Report. 2016. Available online: https://www.Anses.Fr/en/system/files/nut2012sa0103ra-1en.Pdf (accessed on 8 January 2018).
- Dietary Guidelines Advisory Committee. Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010; Secretary of Agriculture and the Secretary of Health and Human Services: Washington, DC, USA, 2010.
- Wirfält, E.; Drake, I.; Wallström, P. What do review papers conclude about food and dietary patterns? Food Nutr. Res. 2013, 57, 20523. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Gazan, R.; Béchaux, C.; Crépet, A.; Sirot, V.; Drouillet-Pinard, P.; Dubuisson, C.; Havard, S. Dietary patterns in the French adult population: A study from the second French national cross-sectional dietary survey (inca2) (2006–2007). Br. J. Nutr. 2016, 116, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Mangano, K.M.; Sahni, S.; Kiel, D.P.; Tucker, K.L.; Dufour, A.B.; Hannan, M.T. Dietary protein is associated with musculoskeletal health independently of dietary pattern: The Framingham third generation study. Am. J. Clin. Nutr. 2017, 105, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Mangano, K.M.; Sahni, S.; Kiel, D.P.; Tucker, K.L.; Dufour, A.B.; Hannan, M.T. Bone mineral density and protein-derived food clusters from the Framingham offspring study. J. Acad. Nutr. Diet. 2015, 115, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- de Gavelle, E.; Huneau, J.-F.; Bianchi, M.C.; Verger, O.E.; Mariotti, F. Protein adequacy is primarily a matter of protein quantity, not quality: Modeling an increase in plant: Animal protein ratio in French adults. Nutrients 2017, 9, 1333. [Google Scholar] [CrossRef] [PubMed]
- Dubuisson, C.; Lioret, S.; Touvier, M.; Dufour, A.; Calamassi-Tran, G.; Volatier, J.-L.; Lafay, L. Trends in food and nutritional intakes of French adults from 1999 to 2007: Results from the inca surveys. Br. J. Nutr. 2010, 103, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Amirabdollahian, F.; Ash, R. An estimate of phytate intake and molar ratio of phytate to zinc in the diet of the people in the United Kingdom. Public Health Nutr. 2010, 13, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Centre d’Information des Viandes & INRA. Valeurs Nutritionnelles des Viandes. Available online: http://www.lessentieldesviandes-pro.org/pdf/PDF-tous%20morceaux.pdf (accessed on 8 March 2017).
- Centre d’Information des Viandes. INAPORC: Etude Nutritionnelle de la Viande de Porc Fraiche. Available online: http://www.lessentieldesviandes-pro.org (accessed on 8 March 2017).
- Kongkachuichai, R.; Napatthalung, P.; Charoensiri, R. Heme and nonheme iron content of animal products commonly consumed in Thailand. J. Food Compost. Anal. 2002, 15, 389–398. [Google Scholar] [CrossRef]
- Armah, S.M.; Carriquiry, A.; Sullivan, D.; Cook, J.D.; Reddy, M.B. A complete diet-based algorithm for predicting nonheme iron absorption in adults. J. Nutr. 2013, 143, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L.; Hulthen, L. Prediction of dietary iron absorption: An algorithm for calculating absorption and bioavailability of dietary iron. Am. J. Clin. Nutr. 2000, 71, 1147–1160. [Google Scholar] [PubMed]
- Miller, L.V.; Krebs, N.F.; Hambidge, K.M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J. Nutr. 2007, 137, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Scott, J.; Cobiac, L. Dietary patterns and breast-feeding in Australian children. Public Health Nutr. 2011, 14, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Sy, M.M.; Feinberg, M.; Verger, P.; Barré, T.; Clémençon, S.; Crépet, A. New approach for the assessment of cluster diets. Food Chem. Toxicol. 2013, 52, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Zetlaoui, M.; Feinberg, M.; Verger, P.; Clémençon, S. Extraction of food consumption systems by nonnegative matrix factorization (nmf) for the assessment of food choices. Biometrics 2011, 67, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Brunet, J.-P.; Tamayo, P.; Golub, T.R.; Mesirov, J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 2004, 101, 4164–4169. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Verger, E.O.; Mariotti, F.; Holmes, B.A.; Paineau, D.; Huneau, J.-F. Evaluation of a diet quality index based on the probability of adequate nutrient intake (pandiet) using national French and us dietary surveys. PLoS ONE 2012, 7, e42155. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.M.; Mariotti, F.; Verger, E.O.; Huneau, J.-F. Pregnancy requires major changes in the quality of the diet for nutritional adequacy: Simulations in the French and the United States populations. PLoS ONE 2016, 11, e0149858. [Google Scholar] [CrossRef] [PubMed]
- Anses. Actualisation des repères du PNNS: Élaboration des références nutritionnelles. Rapport d'expertise collective. 2016. Available online: https://www.Anses.Fr/fr/system/files/nut2012sa0103ra-2.Pdf (accessed on 8 March 2017).
- FAO Expert Consultation. Dietary protein quality evaluation in human nutrition. FAO Food Nutr. Pap. 2011, 92, 1–66. [Google Scholar]
- Anses. Actualisation des apports nutritionnels conseillés pour les acides gras. Rapport d’expertise collective. 2011. Available online: https://www.Anses.Fr/fr/system/files/nut2006sa0359ra.Pdf (accessed on 8 March 2017).
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for thiamin. EFSA J. 2016, 14, 4653. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for vitamin b6. EFSA J. 2016, 14, e04485. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary references values for phosphorus. EFSA J. 2015, 13, 4185. [Google Scholar]
- Bianchi, C.M.; Egnell, M.; Huneau, J.-F.; Mariotti, F. Plant protein intake and dietary diversity are independently associated with nutrient adequacy in French adults. J. Nutr. 2016, 146, 2351–2360. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, G.M.; Verger, E.O.; Huneau, J.-F.; Carpentier, F.; Dubuisson, C.; Mariotti, F. Plant and animal protein intakes are differently associated with nutrient adequacy of the diet of French adults. J. Nutr. 2013, 143, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Gaujoux, R.; Seoighe, C. A flexible r package for nonnegative matrix factorization. BMC Bioinform. 2010, 11, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quatromoni, P.; Copenhafer, D.; Demissie, S.; D'Agostino, R.; O'Horo, C.; Nam, B.; Millen, B. The internal validity of a dietary pattern analysis. The Framingham nutrition studies. J. Epidemiol. Commun. Health 2002, 56, 381–388. [Google Scholar] [CrossRef]
- McCann, S.E.; Marshall, J.R.; Brasure, J.R.; Graham, S.; Freudenheim, J.L. Analysis of patterns of food intake in nutritional epidemiology: Food classification in principal components analysis and the subsequent impact on estimates for endometrial cancer. Public Health Nutr. 2001, 4, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Mathe, T.; Francou, A.; Colin, J.; Hebel, P. Comparaison des modèles alimentaires français et états-uniens. Cahier de recherche du CREDOC 2011, 283, 1–71. [Google Scholar]
- Perignon, M.; Barré, T.; Gazan, R.; Amiot, M.-J.; Darmon, N. The bioavailability of iron, zinc, protein and vitamin a is highly variable in French individual diets: Impact on nutrient inadequacy assessment and relation with the animal-to-plant ratio of diets. Food Chem. 2018, 238, 73–81. [Google Scholar] [CrossRef] [PubMed]
Plant Protein Sub-Groups | Animal Protein Sub-Groups | Composite Protein Subgroups | |||
---|---|---|---|---|---|
Protein Sub-Groups | No. of Protein Food | Protein Sub-Groups | No. of Protein Food | Protein Sub-Groups | No. of Protein Food |
Bread | 13 | Beef | 16 | Pizza | 8 |
Crispbread | 2 | Pork | 5 | Quiche | 5 |
Wholemeal bread or crispbread | 2 | Veal | 6 | Pastry rolls | 4 |
Pastas | 3 | Lamb | 4 | Burgers | 4 |
Cooked wheat | 2 | Poultry | 18 | Sandwiches | 17 |
Beans and peas | 2 | Offal | 15 | Other sandwiches | 8 |
Legumes | 8 | Ham | 16 | Soups | 6 |
Seeds and nuts | 6 | Sausage | 24 | Meat dishes | 18 |
Pâté | 11 | Pasta or potato dishes | 11 | ||
Lean fish | 31 | Pancakes | 13 | ||
Fatty fish | 30 | Dishes without filling | 14 | ||
Fish derivatives | 9 | Vegetables dishes | 5 | ||
Shellfish | 16 | Mixed salads | 5 | ||
Milk | 8 | Custards | 5 | ||
Cocoa beverages | 3 | Desserts | 8 | ||
Sweetened yogurts | 14 | ||||
Natural yogurts | 7 | ||||
Cream cheese | 15 | ||||
Cheese | 90 | ||||
Eggs | 11 |
Processed Meat | Poultry | Pork | Traditional | ||||
---|---|---|---|---|---|---|---|
Protein Food Subgroup | Loading (%) | Protein Food Subgroup | Loading (%) | Protein Food Subgroup | Loading (%) | Protein Food Subgroup | Loading (%) |
Meat dishes 1 | 38.2 | Poultry | 83.8 | Pork | 62.1 | Cheese | 26.1 |
Lamb | 13.2 | Bread | 4.6 | Bread | 11.0 | Bread | 25.1 |
Bread | 12.8 | Yogurts | 3.0 | Sausage | 7.3 | Fatty fish | 9.3 |
Offal | 10.3 | Ham | 3.1 | Ham | 7.3 | ||
Sausages | 6.9 | Pâté | 2.9 | Eggs | 4.9 | ||
Cheese | 6.9 | Pasta | 2.7 | Sausage | 4.7 | ||
Natural yogurts | 4.0 | ||||||
Cream cheese | 2.6 | ||||||
Milk | Take-Away | Beef | Fish | ||||
Protein Food Subgroup | Loading (%) | Protein Food Subgroup | Loading (%) | Protein Food Subgroup | Loading (%) | Protein Food Subgroup | Loading (%) |
Milk | 64.7 | Pizza | 23.2 | Beef | 69.1 | Lean fish | 38.6 |
Cocoa beverages | 8.5 | Other sandwiches | 10.9 | Bread | 9.6 | Veal | 17.6 |
Yogurts | 2.9 | Burgers | 10.7 | Pasta | 4.5 | Wholemeal bread | 8.6 |
Pasta dishes | 2.9 | Mixed salads | 9.4 | Ham | 4.3 | Natural yogurts | 5.3 |
Cream cheese | 2.7 | Sandwiches | 8.7 | Sausages | 3.3 | Yogurts | 4.0 |
Pasta dishes | 7.1 | Yogurts | 3.2 | Cream cheese | 3.3 | ||
Cheese | 5.2 | Soups | 2.7 | ||||
Pancakes | 4.2 | ||||||
Pasta | 3.1 | ||||||
Sausages | 2.9 |
Dietary Protein Pattern 1 | No. of Individuals in the Pattern | Factors Contributing to the Pattern 2 | % Contribution of the Factor |
---|---|---|---|
Processed meat eaters | 192 | Processed meat | 36 |
Poultry eaters | 144 | Poultry | 44 |
Pork eaters | 239 | Pork | 36 |
Traditional eaters | 347 | Traditional | 38 |
Milk drinkers | 241 | Milk | 28 |
Take-away eaters | 172 | Take-away | 37 |
Beef eaters | 244 | Beef | 37 |
Fish eaters | 99 | Fish | 36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gavelle, E.; Huneau, J.-F.; Mariotti, F. Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population. Nutrients 2018, 10, 226. https://doi.org/10.3390/nu10020226
De Gavelle E, Huneau J-F, Mariotti F. Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population. Nutrients. 2018; 10(2):226. https://doi.org/10.3390/nu10020226
Chicago/Turabian StyleDe Gavelle, Erwan, Jean-François Huneau, and François Mariotti. 2018. "Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population" Nutrients 10, no. 2: 226. https://doi.org/10.3390/nu10020226
APA StyleDe Gavelle, E., Huneau, J.-F., & Mariotti, F. (2018). Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population. Nutrients, 10(2), 226. https://doi.org/10.3390/nu10020226