Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants’ Characteristics
2.3. Cell Isolation and Cell Viability Test
2.4. Cell Treatments and Experimental Design
2.5. Calibration of H2O2 to Cell Exposure
2.6. Stimulated PBMCs and Neutrophils H2O2 Production
2.7. RNA Isolation and mRNA Gene Expression
2.8. Cytokine Determination
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khaybullina, Z. Inflammation and oxidative stress: Critical role for metabolic syndrome. J. Vasc. Med. Surg. 2017, 5, 1–3. [Google Scholar] [CrossRef]
- Holvoet, P. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh. K. Acad. Geneeskd. Belg. 2008, 70, 193–219. [Google Scholar] [PubMed]
- Devaraj, S.; Goyal, R.; Jialal, I. Inflammation, oxidative stress, and the metabolic syndrome. US Endocrinol. 2008, 4, 32. [Google Scholar] [CrossRef]
- Carrier, A. Metabolic syndrome and oxidative stress: A complex relationship. Antioxid. Redox Signal. 2017, 26, 429–431. [Google Scholar] [CrossRef] [PubMed]
- Pecht, T.; Gutman-Tirosh, A.; Bashan, N.; Rudich, A. Peripheral blood leucocyte subclasses as potential biomarkers of adipose tissue inflammation and obesity subphenotypes in humans. Obes. Rev. 2014, 15, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.A.; Crowe, P.; Kankara, C.; McPeake, J.; McCance, D.R.; Young, I.S.; Trimble, E.R.; McGinty, A. Restoration of adipose function in obese glucose-tolerant men following pioglitazone treatment is associated with CCAAT enhancer-binding protein β up-regulation. Clin. Sci. 2012, 123, 135–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity & inflammation: The linking mechanism & the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2015, 16, 378–400. [Google Scholar] [CrossRef]
- McMurray, F.; Patten, D.A.; Harper, M.E. Reactive oxygen species and oxidative stress in obesity—Recent findings and empirical approaches. Obesity 2016, 24, 2301–2310. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.; Tran, K.; Reddy, S.; Malik, A. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Kang, C.; Zhang, Y. Exercise-induced hormesis and skeletal muscle health. Free Radic. Biol. Med. 2016, 98, 113–122. [Google Scholar] [CrossRef]
- Di Marzo, N.; Chisci, E.; Giovannoni, R.; Di Marzo, N.; Chisci, E.; Giovannoni, R. The role of hydrogen peroxide in redox-dependent signaling: Homeostatic and pathological responses in mammalian cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G. Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol. 2003, 14, 211S–215S. [Google Scholar] [CrossRef]
- Halliwell, B.; Clement, M.V.; Long, L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 14–17. [Google Scholar] [CrossRef]
- Burdon, R.H.; Rice-Evans, C. Free radicals and the regulation of mammalian cell proliferation. Free Radic. Res. Commun. 1989, 6, 345–358. [Google Scholar] [CrossRef]
- Huang, B.K.; Sikes, H.D. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration. Redox Biol. 2014, 2, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Ludovico, P.; Burhans, W.C. Reactive oxygen species, ageing and the hormesis police. FEMS Yeast Res. 2014, 14, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Harmful and beneficial role of ROS. Oxid. Med. Cell. Longev. 2016, 2016, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Aldosari, S.; Awad, M.; Harrington, E.; Sellke, F.; Abid, M. Subcellular Reactive Oxygen Species (ROS) in cardiovascular pathophysiology. Antioxidants 2018, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.P.; Grune, T.; Speckmann, B. The two faces of Reactive Oxygen Species (ROS) in adipocyte function and dysfunction. Biol. Chem. 2016, 397, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Marinho; Susana, H.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Redox biology hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014, 2, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.; Brito, P.M. Quantitative biology of hydrogen peroxide signaling. Redox Biol. 2017, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, C. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 2012, 8, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Carroll, K.S. Chemical biology approaches to study protein cysteine sulfenylation. Biopolymers 2014, 101, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, C.E.; Carroll, K.S. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Am. Chem. Soc. 2012, 113, 4633–4679. [Google Scholar] [CrossRef] [PubMed]
- Zielonka, J.; Kalyanaraman, B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol. Med. 2018, 128, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Sobotta, M.C.; Barata, A.G.; Schmidt, U.; Mueller, S.; Millonig, G.; Dick, T.P. Exposing cells to H2O2: A quantitative comparison between continuous low-dose and one-time high-dose treatments. Free Radic. Biol. Med. 2013, 60, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.predimedplus.com/ (accessed on 4 December 2018).
- Available online: http://www.isrctn.com/ISRCTN89898870 (accessed on 4 December 2018).
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Boyum, A. Separation of white blood cells. Nature 1964, 204, 793–794. [Google Scholar] [CrossRef]
- Mestre-Alfaro, A.; Ferrer, M.D.; Sureda, A.; Tauler, P.; Marttínez, E.; Bibiloni, M.M.; Micol, V.; Tur, J.A.; Pons, A. Phytoestrogens enhance antioxidant enzymes after swimming exercise and modulate sex hormone plasma levels in female swimmers. Eur. J. Appl. Physiol. 2011, 111, 2281–2294. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Cortés, C.; Capó, X.; Martorell, M.; Tur, J.A.; Sureda, A.; Pons, A. Training enhances immune cells mitochondrial biosynthesis, fission, fusion, and their antioxidant capabilities synergistically with dietary docosahexaenoic supplementation. Oxid. Med. Cell. Longev. 2016, 2016, 8950384. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining viability of cultured cells. Cold Spring Harb. Protocols 2016, 2016, prot087379. [Google Scholar] [CrossRef]
- Ferrer, M.D.; Sureda, A.; Mestre, A.; Tur, J.A.; Pons, A. The double edge of reactive oxygen species as damaging and signaling molecules in HL60 cell culture. Cell. Physiol. Biochem. 2010, 25, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Hebling, U.; Pons, A.; Mueller, S.; Sureda, A.; Hebling, U.; Pons, A.; Mueller, S. Extracellular H2O2 and not superoxide determines the compartment-specific activation of transferrin receptor by iron regulatory protein 1. Free Radic Res. 2005, 5762. [Google Scholar] [CrossRef]
- Sedgwick, G.W.; Fenton, T.W.; Thompson, J.R. Effect of protein precipitating agents on the recovery of plasma-free amino-acids. Can. J. Anim. Sci. 1991, 71, 953–957. [Google Scholar] [CrossRef]
- Arola, L.; Herrera, E.; Alemany, M. A new method for deproteinization of small samples of blood plasma for amino acid determination. Anal. Biochem. 1977, 82, 236–239. [Google Scholar] [CrossRef]
- McArdle, F.; Spiers, S.; Aldemir, H.; Vasilaki, A.; Beaver, A.; Iwanejko, L.; McArdle, A.; Jackson, M.J. Preconditioning of skeletal muscle against contraction-induced damage: The role of adaptations to oxidants in mice. J. Physiol. 2004, 561, 233–244. [Google Scholar] [CrossRef]
- Capó, X.; Martorell, M.; Sureda, A.; Llompart, I.; Tur, J.A.; Pons, A. Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur. J. Nutr. 2014, 54, 35–49. [Google Scholar] [CrossRef]
- Ferrer, M.D.; Sureda, A.; Batle, J.M.; Tauler, P.; Tur, J.A.; Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils. Free Radic Res. 2007, 41, 274–281. [Google Scholar] [CrossRef]
- Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 391–406. [Google Scholar] [CrossRef]
- Capó, X.; Martorell, M.; Sureda, A.; Batle, J.M.; Tur, J.A.; Pons, A. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells. J. Physiol. Biochem. 2016, 72, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Capó, X.; Martorell, M.; Sureda, A.; Tur, J.A.; Pons, A. Effects of dietary Docosahexaenoic, training and acute exercise on lipid mediators. J. Int. Soc. Sports Nutr. 2016, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Crawford, L.J.A; Peake, R.; Price, S.; Morris, T.C.M.; Irvine, A.E. Adiponectin is produced by lymphocytes and is a negative regulator of granulopoiesis. J. Leukoc. Biol. 2010, 88, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Pantopoulos, K.; Schipper, H. Principles of Free Radical Biomedicine; Nova Science Publishers: Hauppauge, NY, USA, 2014; Volume I, ISBN 9781612097732. [Google Scholar]
- Forman, H.J.; Bernardo, A.; Davies, K.J.A. Erratum: Corrigendum to “What is the concentration of hydrogen peroxide in blood and plasma?” (Arch. Biochem. Biophys. (2016) 603 (48–53)). Arch. Biochem. Biophys. 2016, 607, 7. [Google Scholar] [CrossRef] [PubMed]
- Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta Biomembr. 2006, 1758, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Tauler, P.; Aguiló, A.; Guix, P.; Jiménez, F.; Villa, G.; Tur, J.A.; Córdova, A.; Pons Biescas, A. Pre-exercise antioxidant enzyme activities determine the antioxidant enzyme erythrocyte response to exercise. J. Sports Sci. 2005, 23, 5–13. [Google Scholar] [CrossRef]
- Tauler, P.; Aguiló, A.; Gimeno, I.; Noguera, A.; Agustí, A.; Tur, J.A.; Pons, A. Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radic Res. 2003, 37, 931–938. [Google Scholar] [CrossRef]
- Capo, X.; Martorell, M.; Sureda, A.; Tur, J.A.; Pons, A. Effects of docosahexaenoic supplementation and in vitro vitamin C on the oxidative and inflammatory neutrophil response to activation. Oxid. Med. Cell. Longev. 2015, 2015. [Google Scholar] [CrossRef]
- Tauler, P.; Aguiló, A.; Gimeno, I.; Guix, P.; Tur, J.A.; Pons, A. Different effects of exercise tests on the antioxidant enzyme activities in lymphocytes and neutrophils. J. Nutr. Biochem. 2004, 15, 479–484. [Google Scholar] [CrossRef]
- Stöcker, S.; Van Laer, K.; Mijuskovic, A.; Dick, T.P. The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid. Redox Signal. 2017, 28. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Batle, J.M.; Tauler, P.; Aguiló, A.; Cases, N.; Tur, J.A.; Pons, A. Hypoxia/reoxygenation and vitamin C intake influence no synthesis and antioxidant defenses of neutrophils. Free Radic Biol. Med. 2004, 37, 1744–1755. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Quintanar, L.; Funes, L.; Vicente-Salar, N.; Blasco-Lafarga, C.; Pons, A.; Micol, V.; Roche, E. Effect of polyphenol supplements on redox status of blood cells: A randomized controlled exercise training trial. Eur. J. Nutr. 2015, 54, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, S.; Kadamkode, V.; Mahammed, R.; Doraiswami, C.; Banerjee, G. Adiponectin and IL-6: Mediators of inflammation in progression of healthy to type 2 diabetes in Indian population. Adipocyte 2014, 3, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical decrease of an adipose-specific protein. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.E.; Kim, J.M.; Joung, K.H.; Lee, J.H.; You, B.R.; Choi, M.J.; Ryu, M.J.; Ko, Y.B.; Lee, M.A.; Lee, J.; et al. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS ONE 2016, 11, e0154003. [Google Scholar] [CrossRef]
- Sargolzaei, J.; Chamani, E.; Kazemi, T.; Fallah, S.; Soori, H. The role of adiponectin and adipolin as anti-inflammatory adipokines in the formation of macrophage foam cells and their association with cardiovascular diseases. Clin. Biochem. 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Banerjee, S.; Zmijewski, J.W.; Lorne, E.; Liu, G.; Sha, Y.; Abraham, E. Modulation of SCFβ-TrCP-dependent IκBα ubiquitination by hydrogen peroxide. J. Biol. Chem. 2010, 285, 2665–2675. [Google Scholar] [CrossRef]
- Zmijewski, J.W.; Lorne, E.; Zhao, X.; Tsuruta, Y.; Sha, Y.; Liu, G.; Abraham, E. Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury. Am. J. Respir. Crit. Care Med. 2009, 179, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Essick, E.E.; Wilson, R.M.; Pimentel, D.R.; Shimano, M.; Baid, S.; Ouchi, N.; Sam, F. Adiponectin modulates oxidative stress-induced autophagy in cardiomyocytes. PLoS ONE 2013, 8, e68697. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Salvador-Pascual, A.; Cabo, H.; Ferrando, B.; Vina, J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol. Med. 2015, 86, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.M. Phagocytic leukocytes and reactive oxygen species. Histochem. Cell Biol. 2009, 131, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Segal, A.W. Europe PMC funders group how neutrophils kill microbes. Ann. Rev. Immunol. 2007, 2. [Google Scholar] [CrossRef]
- Dan Dunn, J.; Alvarez, L.A.J.; Zhang, X.; Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015, 6, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed]
- Pålsson-McDermott, E.M.; O’Neill, L.A.J. Signal transduction by the lipopolysaccharide receptor, toll-like receptor-4. Immunology 2004, 113, 153–162. [Google Scholar] [CrossRef]
- Sato, M.; Sano, H.; Iwaki, D.; Kudo, K.; Konishi, M.; Takahashi, H.; Takahashi, T.; Imaizumi, H.; Asai, Y.; Kuroki, Y. Direct binding of toll-like receptor 2 to zymosan, and zymosan-induced NF-B activation and TNF-secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 2003, 171, 417–425. [Google Scholar] [CrossRef]
- Gleeson, M.; McFarlin, B.; Flynn, M. Exercise and Toll-like receptors. Exerc. Immunol. Rev. 2006, 12, 34–53. [Google Scholar]
- Tanaka, S.I.; Isoda, F.; Ishihara, Y.; Kimura, M.; Yamakawa, T. T lymphopaenia in relation to body mass index and TNF-α in human obesity: Adequate weight reduction can be corrective. Clin. Endocrinol. 2001, 54, 347–354. [Google Scholar] [CrossRef]
- Ichinohe, T.; Yamazaki, T.; Koshiba, T.; Yanagi, Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. USA 2013, 110, 17963–17968. [Google Scholar] [CrossRef] [PubMed]
- De Brito, O.M.; Scorrano, L. Mitofusin 2: A mitochondria-shaping protein with signaling roles beyond fusion. Antioxid. Redox Signal. 2008, 10, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Cartoni, R.; Leger, B.; Hock, M.B.; Praz, M.; Crettenand, A.; Pich, S.; Ziltener, J.L.; Luthi, F.; Deriaz, O.; Zorzano, A.; et al. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J. Physiol. 2005, 567, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, N. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 2004, 117, 6535–6546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoboue, E.D.; Mougeolle, A.; Kaiser, L.; Averet, N.; Rigoulet, M.; Devin, A. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. Biochim. Biophys. Acta. 2014, 1837, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Romanello, V.; Sandri, M. Mitochondrial quality control and muscle mass maintenance. Front. Physiol. 2015, 6, 422. [Google Scholar] [CrossRef] [PubMed]
- Tauler, P.; Sureda, A.; Cases, N.; Aguiló, A.; Rodríguez-Marroyo, J.A.; Villa, G.; Tur, J.A.; Pons, A. Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J. Nutr. Biochem. 2006, 17, 665–671. [Google Scholar] [CrossRef]
- Ferrer, M.D.; Tauler, P.; Sureda, A.; Pujol, P.; Drobnic, F.; Tur, J.A.; Pons, A. A soccer match’s ability to enhance lymphocyte capability to produce ROS and induce oxidative damage. Int. J. Sport Nutr. Exerc. Metabol. 2009, 19, 243–258. [Google Scholar] [CrossRef]
- Sureda, A.; Ferrer, M.D.; Tauler, P.; Romaguera, D.; Drobnic, F.; Pujol, P.; Tur, J.A.; Pons, A. Effects of exercise intensity on lymphocyte H2O2 production and antioxidant defences in soccer players. Br. J. Sports Med. 2007, 43, 186–190. [Google Scholar] [CrossRef]
- Baldelli, S.; Aquilano, K.; Ciriolo, M.R. Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim. Biophys. Acta Gener. Subj. 2013, 1830, 4137–4146. [Google Scholar] [CrossRef] [PubMed]
- Bruni, F.; Polosa, P.L.; Gadaleta, M.N.; Cantatore, P.; Roberti, M. Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J. Biol. Chem. 2010, 285, 3939–3948. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-F.; Drumea, K.; Mott, S.; Wang, J.; Rosmarin, A.G. GABP Transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol. Cell. Biol. 2014, 34, 3194–3201. [Google Scholar] [CrossRef]
- Putti, R.; Sica, R.; Migliaccio, V.; Lionetti, L. Diet impact on mitochondrial bioenergetics and dynamics. Front. Physiol. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.D.; Busquests-Cortes, C.; Capo, X.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem. 2018, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Capó, X.; Martorell, M.; Busquets-Cortés, C.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Resolvins as proresolving inflammatory mediators in cardiovascular disease. Eur. J. Med. Chem. 2018, 153. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer | Temp | |
---|---|---|---|
18S | Fw: | 5′-GACTCAACACGGGAAACCCTCAC-3′ | 60 °C |
Rv: | 5′-GACTCAACACGGGAAACCCTCAC-3′ | ||
COX2 | Fw: | 5′-TTGCCTGGCAGGGTTGCTGGTGGTA-3′ | 67 °C |
Rv: | 5′-CATCTGCCTGCTCTGGTCAATGGAA-3′ | ||
CAT | Fw: | 5′-TTT GGC TAC TTT GAG GTC AC-3′ | 60 °C |
Rv: | 5′-TCC CCA TTT GCA TTA ACC AG-3′ | ||
TNFα | Fw: | 5′-CCCAGGCAGTCAGATCATCTTCTCGGAA-3′ | 63 °C |
Rv: | 5′-CTGGTTATCTCTCAGCTCCACGCCATT-3′ | ||
IL6 | Fw: | 5′-TACATCCTCGACGGCATCTC-3′ | 63 °C |
Rv: | 5′-ACTCATCTGCACAGCTCTGG-3′ | ||
IL1β | Fw: | 5′-GGACAGGATATGGAGCAACA-3′ | 58 °C |
Rv: | 5′-GGCAGACTCAAATTCCAGCT-3′ | ||
IL8 | Fw: | 5′-GCTCTGTGTGAAGGTGCAGTTTTGCCAA-3′ | 63 °C |
Rv: | 5′-TGAACATGGGGAGTGTTTCA-3′ | ||
NFkB | Fw: | 5′-AAACACTGTGAGGATGGGATCTG-3′ | 60 °C |
Rv: | 5′-CGAAGCCGACCACCATGT-3′ | ||
IL10 | Fw: | 5′-AGAACCTGAAGACCCTCAGGC-3′ | 58 °C |
Rv: | 5′-CCACGGCCTTGCTCTTGTT-3′ | ||
Mfn1 | Fw: | 5′-TGTTTTGGTCGCAAACTCTG-3′ | 60 °C |
Rv: | 5′-CTGTCTGCGTACGTCTTCCA-3′ | ||
Mfn2 | Fw: | 5′-ATGCATCCCCACTTAAGCAC-3′ | 60 °C |
Rv: | 5′-CCAGAGGGCAGAACTTTGTC-3′ | ||
Tfam | Fw: | 5′-CAAGACAGATGAAACCACCTC-3′ | 60 °C |
Rv: | 5′-AGATTGGGGTCGGGTCACT-3′ | ||
NRF2 | Fw: | 5′-GCGACGGAAAGAGTATGAGC-3′ | 60 °C |
Rv: | 5′-GTTGGCAGATCCACTGGTTT-3′ | ||
TLR2 | Fw: | 5′-GGGTTGGAAGCACTGGACAAT-3′ | 55 °C |
Rv: | 5′-TTCTTCCTTGGAGAGGCTGA-3′ | ||
TLR4 | Fw: | 5′-GGTCACCTTTTCTTGATTCCA-3′ | 55 °C |
Rv: | 5′-TCAGAGGTCCATCAAACATCAC-3′ | ||
SOD Cu/Zn | Fw: | 5′-TCA GGA GAC CAT TGC ATC ATT-3′ | 63 °C |
Rv: | 5′-CGC TTT CCT GTC TTT GTA CTT TCT TC-3′ | ||
SOD Mn | Fw: | 5′-GAGAAGGTACCAGGAGGCGTTG-3′ | 64 °C |
Rv: | CAAGCCAACCCCAACCTGAGC-3′ |
(N = 34) | Reference Value | |
---|---|---|
Age (years) | 64.2 ± 0.7 | 1 |
Weight (kg) | 85.5 ± 1.9 | 1 |
Height (height) | 164.3 ± 1.4 | 1 |
Waist circumference (cm) | 107.5 ± 1.3 | 1 |
BMI (kg/m2) | 31.6 ± 0.5 | 1 |
Glucose (mg/dL) | 112.6 ± 3.1 | 76–110 |
Triglycerydes (mg/dL) | 155.9 ± 9.1 | 10–150 |
Total cholesterol (mg/dL) | 198.8 ± 6.1 | <200 |
PBMCs (103 cells/mm3) | 3.1 ± 0.2 | 1 |
Lymphocytes (103 cells/mm3) | 2.5 ± 0.1 | 1–5 |
Monocytes (103 cells/mm3) | 0.6 ± 0.01 | 0–0.8 |
Neutrophils (103 cells/mm3) | 3.9 ± 0.3 | 1.8–7.7 |
Control | High | Low | |||
---|---|---|---|---|---|
nmol H2O2/min/106 cells | PBMCs | ZYM | 21.8 ± 3.2 | 14.6 ± 2.3 * | 17.0 ± 2.8 $ |
LPS | 63.3 ± 2.7 | 9.0 ± 2.2 | 8.7 ± 3.1 | ||
Neutrophils | ZYM | 62.9 ± 9.3 | 62.9 ± 8.3 | 63.3 ± 7.4 | |
LPS | 17.4 ± 2.4 | 49.1 ± 7.4 * | 27.5 ± 5.5 |
(pg/min/106) | Control | High | Low | |
---|---|---|---|---|
PBMCs | Adiponectin | 61.1 ± 11.9 | 92.1 ± 14.7 * | 83.6 ± 15.7 |
IL-6 | 116 ± 51 | 12.7 ± 4.7 * | 38.8 ± 24.6 $ | |
TNFα | 1587 ± 220 | 1643 ± 264 | 1506 ± 172 | |
Neutrophils | Adiponectin | ND | ND | ND |
IL-6 | 38.3 ± 11.41 | 31.1 ± 8.6 | 46.8 ± 15.7 | |
TNFα | 374 ± 90 | 382 ± 112 | 406 ± 64.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busquets-Cortés, C.; Capó, X.; Argelich, E.; Ferrer, M.D.; Mateos, D.; Bouzas, C.; Abbate, M.; Tur, J.A.; Sureda, A.; Pons, A. Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome. Nutrients 2018, 10, 1920. https://doi.org/10.3390/nu10121920
Busquets-Cortés C, Capó X, Argelich E, Ferrer MD, Mateos D, Bouzas C, Abbate M, Tur JA, Sureda A, Pons A. Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome. Nutrients. 2018; 10(12):1920. https://doi.org/10.3390/nu10121920
Chicago/Turabian StyleBusquets-Cortés, Carla, Xavier Capó, Emma Argelich, Miguel D. Ferrer, David Mateos, Cristina Bouzas, Manuela Abbate, Josep A. Tur, Antoni Sureda, and Antoni Pons. 2018. "Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome" Nutrients 10, no. 12: 1920. https://doi.org/10.3390/nu10121920