TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Experimental Design
2.3. Test Foods and Food Intake Calculation
2.4. Gene Sequencing
2.5. Statistical Analysis
3. Results
3.1. TAS1R1/TAS1R3 SNP Sequencing Result
3.2. SNP Variations and Food Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayes, J.E.; Feeney, E.L.; Allen, A.L. Do polymorphisms in chemosensory genes matter for human ingestive behavior? Food Qual. Prefer. 2013, 30, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bailo, B.; Toguri, C.; Eny, K.M.; El-Sohemy, A. Genetic variation in taste and its influence on food selection. OMICS 2009, 13, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Eny, K.M.; Wolever, T.M.; Corey, P.N.; El-Sohemy, A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am. J. Clin. Nutr. 2010, 92, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.G.; Eny, K.M.; Cockburn, M.; Chiu, W.; Nielsen, D.E.; Duizer, L.; El-Sohemy, A. Variation in the TAS1R2 Gene, Sweet Taste Perception and Intake of Sugars. J. Nutrigenet. Nutrigenom. 2015, 8, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Panduro, A.; Martinez-Lopez, E.; Roman, S. Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico. Nutrients 2016, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Melo, S.V.; Agnes, G.; Vitolo, M.R.; Mattevi, V.S.; Campagnolo, P.D.B.; Almeida, S. Evaluation of the association between the TAS1R2 and TAS1R3 variants and food intake and nutritional status in children. Genet. Mol. Biol. 2017, 40, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Keast, R.S.J.; Roura, E. Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults. Br. J. Nutr. 2017, 118, 763–770. [Google Scholar] [CrossRef]
- Gorovic, N.; Afzal, S.; Tjønneland, A.; Overvad, K.; Vogel, U.; Albrechtsen, C.; Poulsen, H.E. Genetic variation in the hTAS2R38 taste receptor and brassica vegetable intake. Scand. J. Clin. Lab. Investig. 2011, 71, 274–279. [Google Scholar] [CrossRef]
- Grimm, E.R.; Steinle, N.I. Genetics of eating behavior: Established and emerging concepts. Nutr. Rev. 2011, 69, 52–60. [Google Scholar] [CrossRef]
- Ikeda, K. New seasonings. Chem. Senses 2002, 27, 847–849. [Google Scholar] [CrossRef]
- Li, X.; Staszewski, L.; Xu, H.; Durick, K.; Zoller, M.; Adler, E. Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 2002, 99, 4692–4696. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.; Chandrashekar, J.; Hoon, M.A.; Feng, L.; Zhao, G.; Ryba, N.J.; Zuker, C.S. An amino-acid taste receptor. Nature 2002, 416, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, N.; Shirosaki, S.; Sanematsu, K.; Yoshida, R.; Ninomiya, Y. Genetic and molecular basis of individual differences in human umami taste perception. PLoS ONE 2009, 4, e6717. [Google Scholar] [CrossRef] [PubMed]
- Lease, H.; Hendrie, G.A.; Poelman, A.A.M.; Delahunty, C.; Cox, D.N. A Sensory-Diet database: A tool to characterise the sensory qualities of diets. Food Qual. Prefer. 2016, 49, 20–32. [Google Scholar] [CrossRef]
- Chamoun, E.; Mutch, D.M.; Allen-Vercoe, E.; Buchholz, A.C.; Duncan, A.M.; Spriet, L.L.; Haines, J.; Ma, D.W.L.; Guelph Family Health Study. A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors and health. Crit. Rev. Food Sci. Nutr. 2016, 58, 1–14. [Google Scholar]
- Choi, J.H.; Lee, J.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, J. Variations in TAS1R taste receptor gene family modify food intake and gastric cancer risk in a Korean population. Mol. Nutr. Food Res. 2016, 60, 2433–2445. [Google Scholar] [CrossRef]
- Griffioen-Roose, S.; Mars, M.; Finlayson, G.; Blundell, J.E.; de Graaf, C. The effect of within-meal protein content and taste on subsequent food choice and satiety. Br. J. Nutr. 2011, 106, 779–788. [Google Scholar] [CrossRef]
- Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef]
- Raliou, M.; Grauso, M.; Hoffmann, B.; Schlegel-Le-Poupon, C.; Nespoulous, C.; Débat, H.; Belloir, C.; Wiencis, A.; Sigoillot, M.; Bano, S.P.; et al. Human genetic polymorphisms in T1R1 and T1R3 taste receptor subunits affect their function. Chem. Senses 2011, 36, 527–537. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Alarcon, S.; Tharp, A.; Ahmed, O.M.; Estrella, N.L.; Greene, T.A.; Rucker, J.; Breslin, P.A. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes. Am. J. Clin. Nutr. 2009, 90, S770–S779. [Google Scholar] [CrossRef]
- Feeney, E.; O'Brien, S.; Scannell, A.; Markey, A.; Gibney, E.R. Genetic variation in taste perception: Does it have a role in healthy eating? Proc. Nutr. Soc. 2011, 70, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Hayes, J.E.; Wallace, M.R.; Bartoshuk, L.M.; Duffy, V.B. Do polymorphisms in the TAS1R1 gene contribute to broader differences in human taste intensity? Chem. Senses 2013, 38, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Visalli, M.; Lange, C.; Schlich, P.; Issanchou, S. Creation of a food taste database using an in-home “taste” profile method. Food Qual. Prefer. 2014, 36, 70–80. [Google Scholar] [CrossRef]
- Joseph, P.V.; Reed, D.R.; Mennella, J.A. Individual differences among children in sucrose detection thresholds: Relationship with age, gender and bitter taste genotype. Nurs. Res. 2016, 65, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, M.V.; van den Berg, M.C.; Vink, N.; Kok, F.J.; de Graaf, C. Taste-nutrient relationships in commonly consumed foods. Br. J. Nutr. 2012, 108, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lugaz, O.; Pillias, A.M.; Faurion, A. A new specific ageusia: Some humans cannot taste L-glutamate. Chem. Senses 2002, 27, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Mennella, J.A.; Finkbeiner, S.; Reed, D.R. The proof is in the pudding: Children prefer lower fat but higher sugar than do mothers. Int. J. Obes. 2012, 36, 1285–1291. [Google Scholar] [CrossRef]
- Mennella, J.A.; Finkbeiner, S.; Lipchock, S.V.; Hwang, L.D.; Reed, D.R. Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLoS ONE 2014, 9, e92201. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, J.; Yang, S.; Kim, J. Genetic variations in taste perception modify alcohol drinking behavior in Koreans. Appetite 2017, 113, 178–186. [Google Scholar] [CrossRef]
- Costanzo, A.; Nowson, C.; Orellana, L.; Bolhuis, D.; Duesing, K.; Keast, R. Effect of dietary fat intake and genetics on fat taste sensitivity: A co-twin randomized controlled trial. Am. J. Clin. Nutr. 2018, 107, 683–694. [Google Scholar] [CrossRef]
Parameter | n = 30 | ||
---|---|---|---|
Range | Mean | SEM | |
Age (years) | 20~37 | 27.4 | 0.69 |
BMI (kg/m2) | 19.1~25.7 | 22.5 | 0.32 |
TFEQ Restraint | 2~14 | 7.3 | 0.68 |
TFEQ Disinhibition | 2~13 | 6.3 | 0.54 |
TFEQ Hunger | 0~14 | 4.8 | 0.60 |
Classification | Food Item 2 | Predominant Nutrient(s) | Calorie | Carb | Protein | Fat/Sat. Fat | Sodium | Serve 3 | Serve Calorie |
---|---|---|---|---|---|---|---|---|---|
(kJ) | (g) | (g) | (g) | (mg) | (g) | (kJ) | |||
Low-fat sweet | Apple | Carb | 218 | 13.81 | 0.26 | 0.17/NA | 1 | 100 | 218 |
Banana | Carb | 372 | 22.84 | 1.1 | 0.33/NA | 1 | 200 | 744 | |
Melon | Carb | 151 | 9.1 | 0.54 | 0.14/NA | 16 | 250 | 375 | |
Fruit Loaf | Carb/Sodium | 1510 | 66.8 | 10.5 | 4.5/0.8 | 370 | 150 | 2265 | |
High-fat sweet | Muffin | Carb/Fat/Sodium | 1920 | 57 | 5 | 23.1/4 | 300 | 135 | 2592 |
Shortbread | Carb/Fat/Sodium | 2210 | 58.4 | 5.6 | 30.3/18.9 | 277 | 66 | 1459 | |
Low-fat savoury | Tomato | Carb | 75 | 3.9 | 0.9 | 0.2/NA | 5 | 150 | 113 |
Green pepper | Carb | 84 | 4.64 | 0.86 | 0.17/NA | 7 | 100 | 84 | |
Carrot | Carb | 172 | 10 | 1 | 0.24/NA | 69 | 100 | 150 | |
Ham | Protein/Sodium | 364 | 1.3 | 14.9 | 2.4/0.8 | 790 | 150 | 546 | |
High-fat savoury | Nuts | Protein/Fat/Sodium | 2885 | 13.4 | 22.7 | 54.6/7.9 | 275 | 100 | 2885 |
Cheese | Protein/Fat/Sodium | 1720 | 1 | 24.8 | 34.7/23.8 | 650 | 66 | 1135 |
Gene | SNP | Polymorphisms | Overall (n) | Proportion of Participants (%) |
---|---|---|---|---|
TAS1R1 | rs41278020 | CC | 27 | 96.4 |
CT | 1 | 3.6 | ||
TT | 0 | - | ||
rs34160967 | GG | 14 | 51.9 | |
GA | 10 | 37.0 | ||
AA | 3 | 11.1 | ||
rs35118458 | GG | 29 | 100 | |
GA | 0 | - | ||
AA | 0 | - | ||
TAS1R3 | rs307355 | CC | 22 | 75.9 |
TC | 5 | 17.2 | ||
TT | 2 | 6.9 | ||
rs307377 | CC | 25 | 86.2 | |
TC | 4 | 13.8 | ||
TT | 0 | - | ||
rs35744813 | CC | 20 | 74.1 | |
TC | 5 | 18.5 | ||
TT | 2 | 7.4 |
Food Category | Umami Preload | Non-Umami Preload | Control Preload |
---|---|---|---|
Total energy (kJ) | 4055.6 (342.7) | 3735.6 (329.3) | 3937.1 (313.6) |
Sweet food (g) | 332.1 (21.7) | 342.6 (22.5) | 332.2(23.5) |
Savoury food (g) | 205.3 (25.3) | 197.9 (25.7) | 209.8 (25.3) |
Total Carb (g) | 106.8 (8.3) | 99.4 (8.3) | 104.0 (7.9) |
Total Prot (g) | 32.2 (3.3) | 30.6 (3.3) | 31.9 (3.3) |
Total Fat (g) | 45.3 (5.2) | 40.9 (4.9) | 43.6 (4.2) |
% Energy Carb | 45.4 (2.2) | 46.4(2.4) | 45.0 (1.7) |
% Energy Prot | 13.2 (0.7) | 13.2 (0.6) | 13.2 (0.8) |
% Energy Fat | 41.1 (1.8) | 40.1 (2.0) | 41.1 (1.3) |
Food Category | TAS1R1 | TAS1R3 | |||||||
---|---|---|---|---|---|---|---|---|---|
rs34160967 | rs34160967 | rs34160967 | |||||||
GG (n = 14) | GA/AA (n = 13) | p value | CC (n = 22) | CT/TT (n = 7) | p value | CC (n = 20) | CT/TT (n = 7) | p value | |
Energy (kJ) | 4045.2 (315.9) | 3751.1 (316.1) | 0.03 | 4184.4 (332.7) | 3055.2 (600.8) | 0.12 | 4272.2 (359.2) | 3047.6 (618.2) | 0.11 |
Sweet food (g) | 347.3 (25.8) | 308.4 (16.8) | 0.32 | 338.7 (20.0) | 309.6 (36.0) | 0.49 | 345.9(21.2) | 308.6(36.4) | 0.39 |
Savoury food (g) | 218.2 (31.0) | 170.6 (32.2) | 0.31 | 226.4 (23.7) | 131.7 (42.7) | 0.07 | 228.1 (23.9) | 128.3(41.1) | 0.05 |
Total Carb (g) | 112.8 (9.1) | 89.7 (9.4) | 0.10 | 105.3 (7.2) | 93.2 (13.0) | 0.43 | 107.0 (7.8) | 93.1 (13.5) | 0.39 |
Total Prot (g) | 35.4 (4.0) | 26.8 (4.1) | 0.16 | 34.8 (3.0) | 21.4 (5.3) | 0.04 | 35.6 (3.1) | 21.2 (5.4) | 0.03 |
Total Fat (g) | 54.9 (6.4) | 33.3 (6.6) | 0.03 | 21.4 (5.3) | 48.2 (5.3) | 0.11 | 43.4 (5.7) | 29.9 (9.8) | 0.11 |
% Energy Carb | 43.8 (2.8) | 45.7 (2.9) | 0.64 | 43.9(2.2) | 49.1 (3.9) | 0.26 | 43.4 (5.7) | 49.2 (4.1) | 0.27 |
% Energy Prot | 12.7 (1.0) | 13.4 (1.0) | 0.66 | 13.6 (0.7) | 12.0 (1.4) | 0.31 | 13.7 (0.8) | 11.9 (1.4) | 0.28 |
% Energy Fat | 42.7 (2.2) | 40.9 (2.3) | 0.57 | 42.2 (1.7) | 38.5 (3.1) | 0.32 | 42.3 (1.9) | 38.6 (3.2) | 0.34 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, P.; Keast, R.; Roura, E. TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively. Nutrients 2018, 10, 1906. https://doi.org/10.3390/nu10121906
Han P, Keast R, Roura E. TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively. Nutrients. 2018; 10(12):1906. https://doi.org/10.3390/nu10121906
Chicago/Turabian StyleHan, Pengfei, Russell Keast, and Eugeni Roura. 2018. "TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively" Nutrients 10, no. 12: 1906. https://doi.org/10.3390/nu10121906
APA StyleHan, P., Keast, R., & Roura, E. (2018). TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively. Nutrients, 10(12), 1906. https://doi.org/10.3390/nu10121906