Association of Muscular Fitness and Body Fatness with Cardiometabolic Risk Factors: The FUPRECOL Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Sample Population
2.2. Muscular Strength
2.3. Body Fatness Examination
2.4. Cardio-Metabolic Risk Factors
2.5. Covariables
2.6. Data Management
2.7. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Association between Fitness and Fatness Parameters with Cardiometabolic Risk Factors
3.3. Optimal Cut-Off Metabolic Syndrome Screening Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.J.L. Demographic and Epidemiologic Drivers of Global Cardiovascular Mortality. N. Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, S.A.; Castiblanco, M.A.; Arias-Gómez, L.F.; Martinez-Ospina, A.; Cohen, D.D.; Holguin, G.A.; Almanza, A.; Lemos, D.M.C.; Correa-Bautista, J.E.; Escobar, I.D.; et al. Results from Colombia’s 2016 Report Card on Physical Activity for Children and Youth. J. Phys. Act. Health 2016, 13, S129–S136. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Martínez-Torres, J.; Méneses-Echavez, J.F.; González-Ruiz, K.; González-Jiménez, E.; Schmidt-RioValle, J.; Lobelo, F. LMS tables for waist circumference and waist–height ratio in Colombian adults: Analysis of nationwide data 2010. Eur. J. Clin. Nutr. 2016, 70, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.; Ortega, F.B.; Lee, D.-C.; Martínez-Vizcaíno, V. Muscular strength as a predictor of all-cause mortality in apparently healthy population: A systematic review and meta-analysis of data from approximately 2 million men and women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, B.; Patel, K.V.; Fried, L.F.; Robinson-Cohen, C.; de Boer, I.H.; Harris, T.; Murphy, R.A.; Satterfield, S.; Goodpaster, B.H.; Shlipak, M.; et al. Health ABC study Association of Muscle Endurance, Fatigability, and Strength with Functional Limitation and Mortality in the Health Aging and Body Composition Study. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Shiroma, E.J.; Buring, J.E.; Miyachi, M.; Lee, I. Strength Training and All-Cause, Cardiovascular Disease, and Cancer Mortality in Older Women: A Cohort Study. J. Am. Heart Assoc. 2017, 6, e007677. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, S.; Sánchez-López, M.; Solera-Martinez, M.; Arias-Palencia, N.; Fuentes-Chacón, R.M.; Martínez-Vizcaíno, V. Physical activity, fitness, and metabolic syndrome in young adults. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 312–321. [Google Scholar] [CrossRef] [PubMed]
- García-Artero, E.; Ortega, F.B.; Ruiz, J.R.; Mesa, J.L.; Delgado, M.; González-Gross, M.; García-Fuentes, M.; Vicente-Rodríguez, G.; Gutiérrez, Á.; Castillo, M.J. El perfil lipídico-metabólico en los adolescentes está más influido por la condición física que por la actividad física (estudio AVENA). Rev. Esp. Cardiol. 2007, 60, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Steene-Johannessen, J.; Anderssen, S.A.; Kolle, E.; Andersen, L.B. Low muscle fitness is associated with metabolic risk in youth. Med. Sci. Sports Exerc. 2009, 41, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.G.; Schmidt, M.D.; Dwyer, T.; Venn, A. Muscular fitness and clustered cardiovascular disease risk in Australian youth. Eur. J. Appl. Physiol. 2012, 112, 3167–3171. [Google Scholar] [CrossRef] [PubMed]
- Grontved, A.; Ried-Larsen, M.; Moller, N.C.; Kristensen, P.L.; Froberg, K.; Brage, S.; Andersen, L.B. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br. J. Sports Med. 2015, 49, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Huynh, Q.L.; Schmidt, M.D.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Childhood Muscular Fitness Phenotypes and Adult Metabolic Syndrome. Med. Sci. Sport Exerc. 2016, 48, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Alejandro Carrillo, H.; González-Ruíz, K.; Vivas, A.; Triana-Reina, H.R.; Martínez-Torres, J.; Prieto-Benavidez, D.H.; Correa-Bautista, J.E.; Ramos-Sepúlveda, J.A.; Villa-González, E.; et al. Fatness mediates the influence of muscular fitness on metabolic syndrome in Colombian collegiate students. PLoS ONE 2017, 12, e0173932. [Google Scholar] [CrossRef] [PubMed]
- Dale, C.E.; Fatemifar, G.; Palmer, T.M.; White, J.; Prieto-Merino, D.; Zabaneh, D.; Engmann, J.E.L.; Shah, T.; Wong, A.; Warren, H.R.; et al. Causal Associations of Adiposity and Body Fat Distribution with Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes MellitusClinical Perspective. Circulation 2017, 135, 2373–2388. [Google Scholar] [CrossRef] [PubMed]
- Jakicic, J.M.; Mishler, A.E.; Rogers, R. Fitness, Fatness, and Cardiovascular Disease Risk and Outcomes. Curr. Cardiovasc. Risk Rep. 2011, 5, 113–119. [Google Scholar] [CrossRef]
- Baker, J.L.; Olsen, L.W.; Sørensen, T.I.A. Childhood Body-Mass Index and the Risk of Coronary Heart Disease in Adulthood. N. Engl. J. Med. 2007, 357, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Rönnemaa, T.; Juonala, M.; Viikari, J.S.A.; Raitakari, O.T. Childhood predictors of the metabolic syndrome in adulthood. The Cardiovascular Risk in Young Finns Study. Ann. Med. 2008, 40, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Jakicic, J.; Neiberg, R.; Lang, W.; Blair, S.N.; Cooper, L.; Hill, J.O.; Johnson, K.C.; Lewis, C.E. Look Ahead Research Group Fitness, Fatness, and Cardiovascular Risk Factors in Type 2 Diabetes. Med. Sci. Sport Exerc. 2007, 39, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Armani, A.; Berry, A.; Cirulli, F.; Caprio, M. Molecular mechanisms underlying metabolic syndrome: The expanding role of the adipocyte. FASEB J. 2017, 31, 4240–4255. [Google Scholar] [CrossRef] [PubMed]
- Kalinkovich, A.; Livshits, G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 2017, 35, 200–221. [Google Scholar] [CrossRef] [PubMed]
- Yazıcı, D.; Sezer, H. Insulin Resistance, Obesity and Lipotoxicity. Obes. Lipotox. 2017, 960, 277–304. [Google Scholar]
- Shah, M.; Hurt, R.T.; Mundi, M.S. Phenotypes of Obesity: How it Impacts Management. Curr. Gastroenterol. Rep. 2017, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.D.; Dwyer, T.; Magnussen, C.G.; Venn, A.J. Predictive associations between alternative measures of childhood adiposity and adult cardio-metabolic health. Int. J. Obes. 2011, 35, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.; Sanders-Tordecilla, A.; Ojeda-Pardo, M.; Cobo-Mejía, E.; Castellanos-Vega, R.; García-Hermoso, A.; González-Jiménez, E.; Schmidt-RioValle, J.; González-Ruíz, K. Percentage of Body Fat and Fat Mass Index as a Screening Tool for Metabolic Syndrome Prediction in Colombian University Students. Nutrients 2017, 9, 1009. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.J.; Robiinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129 (Suppl. 2), S1–S45. [Google Scholar] [CrossRef]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandbakk, S.B.; Nauman, J.; Lavie, C.J.; Wisløff, U.; Stensvold, D. Combined Association of Cardiorespiratory Fitness and Body Fatness with Cardiometabolic Risk Factors in Older Norwegian Adults: The Generation 100 Study. Mayo Clin. Proc. Innov. Qual. Outcomes 2017, 1, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Agredo, R.A. The Fantastic instrument’s validity and reliability for measuring Colombian adults’ life-style. Rev. Salud Publica (Bogota) 2012, 14, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 13: Receiver operating characteristic curves. Crit. Care 2004, 8, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. 2005, 47, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Silventoinen, K.; Tynelius, P.; Rasmussen, F. Muscular strength in male adolescents and premature death: Cohort study of one million participants. BMJ 2012, 345. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Sui, X.; Lobelo, F.; Morrow, J.R.; Jackson, A.W.; Sjöström, M.; Blair, S.N. Association between muscular strength and mortality in men: Prospective cohort study. BMJ 2008, 337, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Jurca, R.; Lamonte, M.J.; Church, T.S.; Earnest, C.P.; Fitzgerald, S.J.; Barlow, C.E.; Jordan, A.N.; Kampert, J.B.; Blair, S.N. Associations of muscle strength and aerobic fitness with metabolic syndrome in men. Med. Sci. Sports Exerc. 2004, 36, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Klimcakova, E.; Polak, J.; Moro, C.; Hejnova, J.; Majercik, M.; Viguerie, N.; Berlan, M.; Langin, D.; Stich, V. Dynamic Strength Training Improves Insulin Sensitivity without Altering Plasma Levels and Gene Expression of Adipokines in Subcutaneous Adipose Tissue in Obese Men. J. Clin. Endocrinol. Metab. 2006, 91, 5107–5112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holten, M.K.; Zacho, M.; Gaster, M.; Juel, C.; Wojtaszewski, J.F.P.; Dela, F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 2004, 53, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Jurca, R.; Lamonte, M.J.; Barlow, C.E.; Kampert, J.B.; Church, T.S.; Blair, S.N. Association of muscular strength with incidence of metabolic syndrome in men. Med. Sci. Sports Exerc. 2005, 37, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.R.; Myers, L.; Berenson, G.S. Predictability of childhood adiposity and insulin for developing insulin resistance syndrome (syndrome X) in young adulthood: The Bogalusa Heart Study. Diabetes 2002, 51, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Wijndaele, K.; Duvigneaud, N.; Matton, L.; Duquet, W.; Thomis, M.; Beunen, G.; Lefevre, J.; Philippaerts, R.M. Muscular strength, aerobic fitness, and metabolic syndrome risk in flemish adults. Med. Sci. Sports Exerc. 2007, 39, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Sacheck, J.M.; Kuder, J.F.; Economos, C.D. Physical Fitness, Adiposity and Metabolic Risk Factors in Young College Students. Med. Sci. Sport Exerc. 2009, 42, 1. [Google Scholar] [CrossRef] [PubMed]
- Jekal, Y.; Kim, E.S.; Im, J.A.; Park, J.H.; Lee, M.K.; Lee, S.H.; Suh, S.H.; Chu, S.H.; Kang, E.S.; Lee, H.C.; et al. Interaction Between Fatness and Fitness on CVD Risk Factors in Asian Youth. Int. J. Sports Med. 2009, 30, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, J.C.; Welk, G.J.; Ihmels, M.; dollman, J. Fatness, Fitness, and Cardiovascular Disease Risk Factors in Children and Adolescents. Med. Sci. Sport Exerc. 2007, 39, 1251–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; p. 58. ISBN 978-92-4-159-997-9. [Google Scholar]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prospective Urban Rural Epidemiology (PURE) Study investigators Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
Characteristics | Men (n = 692) | Women (n = 1106) | p Value |
---|---|---|---|
Age (years) | 20.5 (3.2) | 20.5 (2.9) | 0.077 |
Anthropometric and fatness parameters | |||
Weight (kg) | 68.9 (12.2) | 58.7 (10.3) | <0.001 |
Height (cm) | 172.3 (6.6) | 159.0 (5.8) | <0.001 |
WC (cm) | 78.2 (9.3) | 71.5 (8.0) | <0.001 |
High fat N, (%) * | 77 (11.1) | 153 (13.8) | 0.071 |
BF% | 15.6 (6.5) | 27.0 (7.2) | 0.002 |
High fat N, (%) * | 58 (8.3) | 59 (5.3) | 0.018 |
FMI (kg/m2) | 3.8 (2.2) | 6.5 (2.7) | <0.001 |
High fat N, (%) * | 62 (8.9) | 56 (5.1) | 0.002 |
BMI status | 23.1 (3.6) | 23.2 (3.7) | 0.089 |
High fat N, (%) * | 178 (25.6) | 296 (26.7) | 0.616 |
WHR (cm) | 0.463 (0.05) | 0.451 (0.05) | <0.001 |
High fat N, (%) * | 123 (17.4) | 173 (15.3) | 0.216 |
Blood pressure | |||
Systolic blood pressure (mmHg) | 120.2 (12.9) | 111.2 (11.1) | <0.001 |
Diastolic blood pressure (mmHg) | 74.1 (11.4) | 71.7 (9.3) | <0.001 |
Cardio-metabolic parameters | |||
Triglycerides (mg/dL) | 93.7 (48.5) | 88.5 (45.3) | 0.017 |
LDL cholesterol (mg/dL) | 81.0 (26.0) | 87.9 (26.1) | 0.386 |
HDL cholesterol (mg/dL) | 39.5 (10.6) | 43.9 (12.8) | <0.001 |
Glucose (mg/dL) | 84.8 (11.9) | 86.0 (11.5) | 0.010 |
High metabolic risk N (%) # | 253 (36.5) | 398 (36.0) | 0.826 |
Life-style | |||
Tobacco (≥10 cigarettes per week) N, (%) * | 199 (28.7) | 210 (19.0) | 0.548 |
Alcohol (≥1 times per week) N, (%) * | 378 (54.6) | 430 (38.9) | 0.451 |
Physical activity (>150 min per week) N, (%) * | 243 (35.1) | 222 (20.1) | 0.001 |
Adherence to a MedDiet (food consumption) | |||
Optimal adherence N, (%) * | 76 (11.0) | 124 (11.1) | 0.241 |
Muscular strength | |||
Handgrip (kg) | 39.4 (7.1) | 24.0 (4.9) | <0.001 |
NGS | 0.582 (0.11) | 0.416 (0.09) | <0.001 |
Parameter | Men (n = 692) | Women (n = 1106) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Low NGS | 1.8 | 1.1–2.9 | 0.006 | 1.6 | 1.0–2.5 | 0.036 |
High body mass index | 3.4 | 2.3–4.9 | <0.001 | 3.5 | 2.4–5.2 | <0.001 |
High waist circumference | 4.5 | 2.7–7.6 | <0.001 | 4.1 | 2.5–6.5 | <0.001 |
High body fat percentage | 4.5 | 2.4–8.1 | <0.001 | 6.4 | 3.1–8.1 | <0.001 |
High fat mass index | 4.7 | 2.6–8.4 | <0.001 | 7.3 | 3.4–9.7 | <0.001 |
High WHR | 3.8 | 2.5–5.9 | <0.001 | 4.0 | 2.5–6.4 | <0.001 |
Parameter | Men (n = 692) | Women (n = 1106) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Body mass index | ||||||
Unfit and low fat | 1.0 | 0.5–2.1 | 0.858 | 0.7 | 0.2–1.7 | 0.441 |
Unfit and high fat | 4.6 | 2.5–8.5 | <0.001 | 3.8 | 2.1–6.6 | <0.001 |
Fit and high fat | 2.9 | 1.9–4.5 | <0.001 | 3.3 | 2.1–5.1 | <0.001 |
Fit and low fat | 1.0 (Reference) | 1.0 (Reference) | ||||
Waist circumference | ||||||
Unfit and low fat | 1.0 | 0.6–1.9 | 0.763 | 1.1 | 0.6–2.0 | 0.727 |
Unfit and high fat | 5.5 | 2.6–11.4 | <0.001 | 4.1 | 2.0–8.1 | <0.001 |
Fit and high fat | 3.6 | 1.7–7.4 | 0.001 | 4.1 | 2.2–7.5 | <0.001 |
Fit and low fat | 1.0 (Reference) | 1.0 (Reference) | ||||
Body fat percentage | ||||||
Unfit and low fat | 1.4 | 0.8–2.4 | 0.192 | 1.1 | 0.6–1.93 | 0.655 |
Unfit and high fat | 4.7 | 2.1–10.7 | <0.001 | 7.4 | 2.9–18.9 | <0.001 |
Fit and high fat | 4.6 | 1.9–10.9 | <0.001 | 5.3 | 1.7–16.9 | 0.004 |
Fit and low fat | 1.0 (Reference) | 1.0 (Reference) | ||||
Fat mass index | ||||||
Unfit and low fat | 1.2 | 0.7–2.1 | 0.435 | 1.133 | 0.6–1.94 | 0.650 |
Unfit and high fat | 4.8 | 2.3–10.2 | <0.001 | 7.751 | 2.3–15.8 | 0.001 |
Fit and high fat | 4.8 | 1.9–11.9 | 0.001 | 7.332 | 2.8–18.9 | <0.001 |
Fit and low fat | 1.0 (Reference) | 1.0 (Reference) | ||||
WHR | ||||||
Unfit and low fat | 1.1 | 0.7–1.6 | 0.661 | 1.1 | 0.6–2.3 | 0.757 |
Unfit and high fat | 4.1 | 2.1–10.1 | <0.001 | 4.1 | 2.1–9.1 | <0.001 |
Fit and high fat | 2.6 | 1.6–5.31 | <0.001 | 3.1 | 2.9–5.1 | <0.001 |
Fit and low fat | 1.0 (Reference) | 1.0 (Reference) |
Parameters | NGS | BMI | WC | BF% | FMI | WHR | |
---|---|---|---|---|---|---|---|
Men (n = 692) | AUC (SE) | 0.617 (0.022) | 0.662 (0.021) | 0.669 (0.021) | 0.681 (0.021) | 0.679 (0.021) | 0.650 (0.022) |
95% CI | 0.580 to 0.653 | 0.626 to 0.697 | 0.632 to 0.703 | 0.645 to 0.715 | 0.643 to 0.714 | 0.613 to 0.685 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Cut-off | 0.56 | 24.72 | 83.0 | 19.2 | 4.78 | 0.49 | |
Sensitivity (95% CI) | 56.86 (50.5 to 63.0) | 43.36 (37.2 to 49.7) | 39.37 (33.3 to 45.7) | 42.58 (36.4 to 48.9) | 42.97 (36.8 to 49.3) | 32.68 (26.9 to 38.8) | |
Specificity (95% CI) | 65.70 (61.1 to 70.1) | 81.92 (78.0 to 85.4) | 85.39 (81.8 to 88.5) | 83.60 (79.8 to 86.9) | 83.15 (79.3 to 86.5) | 88.54 (85.2 to 91.3) | |
+LR (95% CI) | 1.66 (1.4 to 2.0) | 2.40 (1.9 to 3.1) | 2.70 (2.1 to 3.5) | 2.60 (2.0 to 3.3) | 2.55 (2.0 to 3.3) | 2.85 (2.1 to 3.9) | |
−LR (95% CI) | 0.66 (0.6 to 0.8) | 0.69 (0.6 to 0.8) | 0.71 (0.6 to 0.8) | 0.69 (0.6 to 0.8) | 0.69 (0.6 to 0.8) | 0.76 (0.7 to 0.8) | |
%PPV (95% CI) | 48.7 (42.9 to 54.5) | 57.8 (50.5 to 64.9) | 60.6 (52.7 to 68.1) | 59.9 (52.4 to 67.1) | 59.5 (52.0 to 66.6) | 61.9 (53.2 to 70.2) | |
%NPV (95% CI) | 72.7 (68.1 to 77.0) | 71.7 (67.6 to 75.5) | 71.2 (67.1 to 75.0) | 71.7 (67.6 to 75.5) | 71.7 (67.6 to 75.6) | 69.7 (65.8 to 73.5) | |
Women (n = 1106) | AUC (SE) | 0.664 (0.017) | 0.662 (0.016) | 0.653 (0.017) | 0.662 (0.017) | 0.664 (0.017) | 0.652 (0.017) |
95% CI | 0.564 to 0.683 | 0.633 to 0.689 | 0.625 to 0.681 | 0.633 to 0.690 | 0.636 to 0.692 | 0.624 to 0.680 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Cut-off | 0.39 | 26.61 | 79.40 | 32.90 | 7.92 | 0.50 | |
Sensitivity (95% CI) | 49.26 (44.3 to 54.2) | 28.08 (23.8 to 32.7) | 46.42 (41.5 to 51.4) | 28.89 (24.5 to 33.6) | 40.59 (35.8 to 45.6) | 22.72 (18.7 to 27.1) | |
Specificity (95% CI) | 65.50 (61.9 to 69.0) | 89.86 (87.4 to 92.0) | 77.33 (74.1 to 80.3) | 88.41 (85.8 to 90.7) | 83.08 (80.1 to 85.8) | 91.38 (89.1 to 93.3) | |
+LR (95% CI) | 1.43 (1.2 to 1.6) | 2.77 (2.1 to 3.6) | 2.05 (1.7 to 2.4) | 2.49 (1.9 to 3.2) | 2.40 (2.0 to 2.9) | 2.63 (2.0 to 3.5) | |
−LR (95% CI) | 0.77 (0.7 to 0.9) | 0.80 (0.7 to 0.9) | 0.69 (0.6 to 0.8) | 0.80 (0.8 to 0.9) | 0.72 (0.7 to 0.8) | 0.85 (0.8 to 0.9) | |
%PPV (95% CI) | 44.7 (40.1 to 49.5) | 61.0 (53.6 to 68.0) | 53.6 (48.2 to 58.9) | 58.5 (51.3 to 65.4) | 57.5 (51.6 to 63.4) | 59.7 (51.5 to 67.6) | |
%NPV (95% CI) | 69.5 (65.9 to 72.9) | 68.9 (65.8 to 71.9) | 71.9 (68.6 to 75.1) | 68.7 (65.6 to 71.7) | 71.2 (68.0 to 74.3) | 67.7 (64.7 to 70.7) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Rodríguez, M.; Ramírez-Vélez, R.; Correa-Bautista, J.E.; Castellanos-Vega, R.d.P.; Arias-Coronel, F.; González-Ruíz, K.; Alejandro Carrillo, H.; Schmidt-RioValle, J.; González-Jiménez, E. Association of Muscular Fitness and Body Fatness with Cardiometabolic Risk Factors: The FUPRECOL Study. Nutrients 2018, 10, 1742. https://doi.org/10.3390/nu10111742
Correa-Rodríguez M, Ramírez-Vélez R, Correa-Bautista JE, Castellanos-Vega RdP, Arias-Coronel F, González-Ruíz K, Alejandro Carrillo H, Schmidt-RioValle J, González-Jiménez E. Association of Muscular Fitness and Body Fatness with Cardiometabolic Risk Factors: The FUPRECOL Study. Nutrients. 2018; 10(11):1742. https://doi.org/10.3390/nu10111742
Chicago/Turabian StyleCorrea-Rodríguez, María, Robinson Ramírez-Vélez, Jorge Enrique Correa-Bautista, Rocío del Pilar Castellanos-Vega, Florencio Arias-Coronel, Katherine González-Ruíz, Hugo Alejandro Carrillo, Jacqueline Schmidt-RioValle, and Emilio González-Jiménez. 2018. "Association of Muscular Fitness and Body Fatness with Cardiometabolic Risk Factors: The FUPRECOL Study" Nutrients 10, no. 11: 1742. https://doi.org/10.3390/nu10111742
APA StyleCorrea-Rodríguez, M., Ramírez-Vélez, R., Correa-Bautista, J. E., Castellanos-Vega, R. d. P., Arias-Coronel, F., González-Ruíz, K., Alejandro Carrillo, H., Schmidt-RioValle, J., & González-Jiménez, E. (2018). Association of Muscular Fitness and Body Fatness with Cardiometabolic Risk Factors: The FUPRECOL Study. Nutrients, 10(11), 1742. https://doi.org/10.3390/nu10111742