Association between Cardiac Remodeling and Metabolic Alteration in an Experimental Model of Obesity Induced by Western Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Protocol
2.2. Nutricional Profile
2.3. Plasma Measurements
2.4. Homeostatic Model Assessment Index (HOMA-IR)
2.5. Systolic Blood Pressure (SBP)
2.6. Echocardiographic Analysis
2.7. Statistical Analysis
2.8. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xia, J.; Zhang, Y.; Xin, L.; Kong, S.; Chen, Y.; Yang, S.; Li, K. Global transcriptomic profiling of cardiac hypertrophy and fatty heart induced by long-term high-energy diet in bama miniature pigs. PLoS ONE 2015, 10, e0132420. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Hellstrand, S.; Drake, I.; Schulz, C.A.; Ericson, U.; Hlebowicz, J.; Persson, M.M.; Gullberg, B.; Hedblad, B.; Engström, G.; et al. Diet quality and change in blood lipids during 16 years of follow-up and their interaction with genetic risk for dyslipidemia. Nutrients 2016, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Varlamov, O. Western-style diet, sex steroids and metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Magliano, D.J.; Shaw, J.E.; Zimmet, P.Z. How to best define the metabolic syndrome. Ann. Med. 2006, 38, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Flamment, M.; Arvier, M.; Gallois, Y.; Simard, G.; Malthièry, Y.; Ritz, P.; Ducluzeau, P.H. Fatty liver and insulin resistance in obese Zucker rats: No role for mitochondrial dysfunction. Biochimie 2008, 90, 1407–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.H.; Mizuta, M.; Kurose, T.; Matsukura, S. Early events involved in the development of insulin resistance in Zucker fatty rat. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitar, M.S.; Al-Saleh, E.; Al-Mulla, F. Oxidative stress—Mediated alterations in glucose dynamics in a genetic animal model of type II diabetes. Life Sci. 2005, 77, 2552–2573. [Google Scholar] [CrossRef] [PubMed]
- Cacanyiova, S.; Kristek, F. Adaptive vasoactive response to modulatory effects of endothelin-1 in spontaneously hypertensive rats. Pharmacol. Rep. 2008, 60, 941–949. [Google Scholar] [PubMed]
- Marsh, S.A.; Dell’italia, L.J.; Chatham, J.C. Interaction of diet and diabetes on cardiovascular function in rats. Am. J. Physiol. Heart Circ. Physiol. 2008, 296, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, M.-W. Development and application of rodent models for type 2 diabetes. Diabetes Obes. Metab. 2005, 7, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Doggrell, S.A.; Brown, L. Rat models of hypertension, cardic hypertrophy and failure. Cardiovasc. Res. 1998, 39, 89–105. [Google Scholar] [CrossRef]
- Carroll, J.F.; Zenebe, W.J.; Strange, T.B. Cardiovascular Function in a Rat Model of Diet-Induced Obesity. Hypertension 2006, 48, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okere, I.C.; Chandler, M.P.; Mcelfresh, T.A.; Rennison, J.H.; Sharov, V.; Sabbah, H.N.; Tserng, K.Y.; Hoit, B.D.; Ernsberger, P.; Young, M.E.; et al. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H38–H44. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Chouabe, C.; Mertani, H.C.; Raccurt, M.; Smallwood, B.; Chouabe, C.; Bonvallet, R. Electrophysiological Characterization of Left Ventricular Myocytes from Obese Sprague-Dawley Rat. Obesity 2006, 14, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Poudyal, H.; Iyer, A.; Nazer, R.; Alam, A.; Diwan, V.; Kauter, K.; Sernia, C.; Campbell, F.; Ward, L.; et al. High-carbohydrate, High-fat Diet—Induced Metabolic Syndrome and Cardiovascular Remodeling in Rats. J. Cardiovasc. Pharmacol. 2011, 57, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Ferron, A.; Jacobsen, B.B.; Sant’Ana, P.; Campos, D.; Tomasi, L.; Luzivotto, R.; Cicogna, A.C.; Leopoldo, A.S.; Lima-Leopoldo, A.P. Cardiac Dysfunction Induced by Obesity Is Not Related to β-Adrenergic System Impairment at the Receptor-Signalling Pathway. PLoS ONE 2015, 10, e0138605. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.F.; Jones, A.E.; Hester, R.L.; Reinhart, G.A.; Cockrell, K.; Mizelle, H.L. Reduced cardiac contractile responsiveness to isoproterenol in obese rabbits. Hypertension 1997, 30, 1376–1381. [Google Scholar] [CrossRef] [PubMed]
- Relling, D.P.; Esberg, L.B.; Fang, C.X.; Johnson, W.T.; Murphy, E.J.; Carlson, E.C.; Saari, J.T.; Ren, J. High-fat diet-induced juvenile obesity leads to cardiomyocyte dysfunction and upregulation of Foxo3a transcription factor independent of lipotoxicity and apoptosis. J. Hypertens. 2006, 24, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.F.; Kyser, C.K.; Martin, M.M. beta-Adrenoceptor density and adenylyl cyclase activity in obese rabbit hearts. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Francisqueti, V.F.; Minatel, I.O.; Ferron, A.J.T.; Bazan, Z.; Silva, S.; de Campos, D.H.S.; Ferreira, A.L.; Moreto, F.; Cicogna, A.C.; et al. Effect of Gamma-Oryzanol as Therapeutic Agent to Prevent Cardiorenal Metabolic Syndrome in Animals Submitted to High Sugar-Fat Diet. Nutrients 2017, 9, 1299. [Google Scholar] [CrossRef] [PubMed]
- Xavier, H.T.; Izar, M.C.; Faria Neto, J.R.; Assad, M.H.; Rocha, V.Z.; Sposito, A.C.; Fonseca, F.A.; dos Santos, J.E.; Santos, R.D.; Bertolami, M.C.; et al. V Diretriz Brasileria de dislipidemia e prevenção da aterosclerose. Arq. Bras. Cardiol. 2013, 101, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Shultz, S.P.; Dahiya, A.; Fu, J.; Flatley, C.; Duncan, D.; Cardinal, J.; Kostner, K.M.; Byrne, N.M.; Hills, A.P.; et al. Relation of reduced preclinical left ventricular diastolic function and cardiac remodeling in overweight youth to insulin resistance and inflammation. Am. J. Cardiol. 2015, 115, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Sahn, D.J.; Demaria, A.; Kisslo, J. Recommendations Regarding Quantitation in M-Mode Echocardiography: Results of a Survey of Echocardiographic Measurements. Circulation 1978, 58, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Smith, M.; Karthikeyan, S.; Jeffers, M.S.; Janik, R.; Thomason, L.A.; Stefanovic, B.; Corbett, D. A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat. Physiol. Behav. 2016, 16, 30260–30268. [Google Scholar] [CrossRef] [PubMed]
- Buettner, R.; Parhofer, K.G.; Woenckhaus, M.; Wrede, C.E.; Kunz-Schughart, L.A.; Schölmerich, J.; Bollheimer, L.C. Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. J. Mol. Endocrinol. 2006, 36, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Kumazoe, M.; Nakamura, Y.; Won, Y.S.; Bae, J.; Yamashita, S.; Tachibana, H. The Combination of Green Tea Extract and Eriodictyol Inhibited High-Fat/High-Sucrose Diet-Induced Cholesterol Upregulation Is Accompanied by Suppression of Cholesterol Synthesis Enzymes Synthesis Enzymes. J. Nutr. Sci. Vitaminol. 2016, 62, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Pons, Z.; Guerrero, L.; Margalef, M.; Arola, L.; Arola-Arnal, A.; Muguerza, B. Effect of low molecular grape seed proanthocyanidins on blood pressure and lipid homeostasis in cafeteria diet-fed rats. J. Physiol. Biochem. 2005, 70, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Sclafani, A.; Berner, C.N. Influence of diet palatability on the meal taking behavior of hypothalamic hyperphagic and normal rats. Physiol. Behav. 1976, 16, 355–363. [Google Scholar] [CrossRef]
- Sampey, B.P.; Vanhoose, A.M.; Winfield, H.M.; Freemerman, A.J.; Muehlbauer, M.J.; Fueger, P.T.; Newgard, C.B.; Makowski, L. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: Comparison to high-fat diet. Obesity 2011, 19, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Quesada, H.; del Bas, J.M.; Pajuelo, D.; Díaz, S.; Fernandez-Larrea, J.; Pinent, M.; Arola, L.; Salvadó, M.J.; Bladé, C. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes. 2009, 33, 1007–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- du Toit, E.F.; Nabben, M.; Lochner, A. A potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injury. Basic Res. Cardiol. 2005, 100, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Coatmellec-Taglioni, G. Sexual Dimorphism in Cafeteria Diet-Induced Hypertension Is Associated with Gender-Related Difference in Renal Leptin Receptor Down-Regulation. J. Pharmacol. Exp. Ther. 2003, 305, 362–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coatmellec-Taglioni, G.; Dausse, J.P.; Ribière, C.; Giudicelli, Y. Hypertension in cafeteria-fed rats: Alterations in renal α2-adrenoceptor subtypes. Am. J. Hypertens. 2000, 13, 529–534. [Google Scholar] [CrossRef]
- Howitt, L.; Sandow, S.L.; Grayson, T.H.; Ellis, Z.E.; Morris, M.J.; Murphy, T.V. Differential effects of diet-induced obesity on BKCa β1-subunit expression and function in rat skeletal muscle arterioles and small cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H29–H40. [Google Scholar] [CrossRef] [PubMed]
- Pasarín, M.; La Mura, V.; Gracia-Sancho, J.; García-Calderó, H.; Rodríguez-Vilarrupla, A.; García-Pagán, J.C.; Bosch, J.; Abraldes, J.G. Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD. PLoS ONE 2012, 7, e32785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopoldo, A.S.; Sugizaki, M.M.; Lima-Leopoldo, A.P.; do Nascimento, A.F.; Luvizotto, R.D.A.M.; de Campos, D.H.S.; Okoshi, K.; Dal Pai-Silva, M.; Padovani, C.R.; Cicogna, A.C. Cardiac remodeling in a rat model of diet-induced obesity. Can. J. Cardiol. 2010, 26, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Vileigas, D.F.; de Deus, A.F.; da Silva, D.C.; de Tomasi, L.C.; de Campos, D.H.; Adorni, C.S.; de Oliveira, S.M.; Sant’Ana, P.G.; Okoshi, K.; Padovani, C.R.; et al. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function. Physiol. Rep. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, N.; Silva a, F.; Rodrigues, P.G.; Correia, E.; Moura, C.; Eloy, C.; Roncon-Albuquerque, R., Jr.; Falcão-Pires, I.; Leite-Moreira, A.F. Early cardiac changes induced by a hypercaloric diet in “subclinical” obesity. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H655–H666. [Google Scholar] [CrossRef] [PubMed]
- Chahal, H.; McClelland, R.L.; Tandri, H.; Jain, A.; Turkbey, E.B.; Hundley, W.G.; Barr, R.G.; Kizer, J.; Lima, J.A.; Bluemke, D.A.; et al. Obesity and right ventricular structure and function: The MESA-right ventricle study. Chest 2012, 141, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Eschalier, R.; Rossignol, P.; Kearney-Schwartz, A.; Adamopoulos, C.; Karatzidou, K.; Fay, R.; Mandry, D.; Marie, P.Y.; Zannad, F. Features of cardiac remodeling, associated with blood pressure and fibrosis biomarkers, are frequent in subjects with abdominal obesity. Hypertension 2014, 63, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Rider, O.J.; Lewis, A.J.M.; Lewandowski, A.J.; Ntusi, N.; Nethononda, R.; Petersen, S.E.; Francis, J.M.; Pitcher, A.; Banerjee, R.; Leeson, P.; et al. Obese subjects show sex-specific differences in right ventricular hypertrophy. Circ. Cardiovasc. Imaging 2014, 8, e002454. [Google Scholar] [CrossRef] [PubMed]
- Skurk, T.; Alberti-huber, C.; Herder, C.; Hauner, H. Relationship between Adipocyte Size and Adipokine Expression and Secretion. J. Clin. Endocrinol. Metab. 2016, 92, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.D.; Litwin, S.E.; Sweeney, G. Cardiac Remodeling in Obesity. Physiol. Rev. 2008, 88, 389–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, N.; Katus, H.A.; Olson, E.N.; Hill, J.A. Hypertrophy of the Heart: A New Therapeutic Target? Circulation 2004, 109, 1580–1589. [Google Scholar] [CrossRef] [PubMed]
- Rider, O.J.; Francis, J.M.; Ali, M.K.; Byrne, J.; Clarke, K.; Neubauer, S.; Petersen, S.E. Determinants of left ventricular mass in obesity; a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2009, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wensley, I.; Salaveria, K.; Bulmer, A.C.; Donner, D.G.; du Toit, E.F. Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp. Physiol. 2013, 98, 1552–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanasekaran, A.; Gruenloh, S.K.; Buonaccorsi, J.N.; Zhang, R.; Gross, G.J.; Falck, J.R.; Patel, P.K.; Jacobs, E.R.; Medhora, M. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H724–H735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, A.L.; Uslu, N.; Dayi, S.U.; Nurkalem, Z. Effects of Isolated Obesity on Left and Right Ventricular Function: A Tissue Doppler and Strain Rate Imaging Study. Echocardiography 2010, 27, 236–243. [Google Scholar] [CrossRef] [PubMed]
- de Courten, B.; Kurdiova, T.; de Courten, M.P.; Belan, V.; Everaert, I.; Vician, M.; Teede, H.; Gasperikova, D.; Aldini, G.; Derave, W.; et al. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans. PLoS ONE 2015, 10, e0138707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, M.M.; Beleigoli, A.M.; De Fatima Diniz, M.; Freire, C.V.; Ribeiro, A.L.; Nunes, M.C.P. Strain imaging in morbid obesity: Insights into subclinical ventricular dysfunction. Clin. Cardiol. 2011, 34, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Fidan-Yaylali, G.; Yaylali, Y.T.; Erdogan, Ç.; Can, B.; Senol, H.; Gedik-Topçu, B.; Topsakal, S. The Association between Central Adiposity and Autonomic Dysfunction in Obesity. Med. Princ. Prat. 2016, 25, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buono, F.; Spinelli, L.; Giallauria, F.; Assante Di Panzillo, E.; Di Marino, S.; Ferrara, F.; Vigorito, C.; Trimarco, B.; Morisco, C. Usefulness of satisfactory control of low-density lipoprotein cholesterol to predict left ventricular remodeling after a first ST-elevation myocardial infarction successfully reperfused. Am. J. Cardiol. 2011, 107, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Agrawal, D.K. High-Density Lipoprotein: A Novel Target for Antirestenosis Therapy. Clin. Transl. Sci. 2014, 7, 500–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordts, S.C.; Muthuramu, I.; Nefyodova, E.; Jacobs, F.; Van Craeyveld, E.; De Geest, B. Beneficial effects of selective HDL-raising gene transfer on survival, cardiac remodelling and cardiac function after myocardial infarction in mice. Gene Ther. 2013, 20, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.D.; Wu, C.C.; Chen, W.J.; Lee, C.M.; Chen, M.F.; Liau, C.S.; Lee, Y.T. Dyslipidemias have a detrimental effect on left ventricular systolic function in patients with a first acute myocardial infarction. Am. J. Cardiol. 1998, 81, 531–537. [Google Scholar] [CrossRef]
- Kempen, H.J.; van Gent, C.M.; Buytenhek, R.; Buis, B. Association of cholesterol concentrations in low-density lipoprotein, high-density lipoprotein, and high-density lipoprotein subfractions, and of apolipoproteins AI and AII with coronary stenosis and left ventricular function. J. Lab. Clin. Med. 1987, 109, 19–26. [Google Scholar] [PubMed]
- Barter, P.J.; Puranik, R.; Rye, K.A. New insights into the role of HDL as an anti-inflammatory agent in the prevention of cardiovascular disease. Curr. Cardiol. Rep. 2007, 9, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, G.W.; Rye, K.-A.; Gamble, J.R.; Vadas, M.A.; Barter, P.J. High-Density Lipoproteins Inhibit Cytokine-Induced Expression of Endothelial Cell Adhesion Molecules. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, L.; Franceschini, G.; Sirtori, C.R.; De Palma, A.; Saresella, M.; Ferrante, P.; Taramelli, D. Inhibition of VCAM-1 expression in endothelial cells by reconstituted high density lipoproteins. Biochem. Biophys. Res. Commun. 1997, 238, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S. [Google Scholar] [CrossRef] [PubMed]
- Namiri-Kalantari, R.; Gao, F.; Chattopadhyay, A.; Wheeler, A.A.; Navab, K.D.; Farias-Eisner, R.; Reddy, S.T. The dual nature of HDL: Anti-Inflammatory and pro-Inflammatory. BioFactors 2015, 41, 153–159. [Google Scholar] [CrossRef] [PubMed]
Diet | ||
---|---|---|
Ingredients | Control | HSF |
Soybean meal (g/kg) | 335 | 340 |
Sorghum (g/kg) | 278 | 80 |
Soy hulls (g/kg) | 188.5 | 116.7 |
Dextrin (g/kg) | 146.5 | 20 |
Sucrose (g/kg) | - | 80 |
Fructose (g/kg) | - | 180 |
Soy oil (g/kg) | 14 | - |
Lard (g/kg) | - | 154.3 |
Minerals (g/kg) | 25 | 25 |
Salt (g/kg) | 4 | 8 |
Components | ||
Protein (%) | 20 | 16 |
Carbohydrate (%) | 60 | 70 |
Fat (%) | 4 | 14.6 |
% Energy from protein | 22.85 | 13.45 |
% Energy from carbohydrate | 66.78 | 58.69 |
% Energy from fat | 10.37 | 27.8 |
Energy (kcal/g) | 3.59 | 4.35 |
Groups | ||
---|---|---|
Variables | Control (n = 12) | HSF (n = 12) |
Glucose (mg/dL) | 83.4 ± 6.3 | 97.9 ± 8.5 * |
Insulin (mg/dL) | 2.5 ± 1.2 | 5.2 ± 1.3 * |
HOMA-IR | 21.3 ± 9.6 | 50.7 ± 11.2 * |
Variables | Groups | |
---|---|---|
Control (n = 12) | HSF (n = 12) | |
LVDD, mm | 7.50 ± 0.40 | 6.53 ± 0.49 * |
LVSD, mm | 2.68 ± 0.34 | 3.31 ± 0.44 * |
LVPWD, mm | 1.54 ± 0.11 | 1.97 ± 0.11 * |
Aorta diameter, mm | 3.79 ± 0.24 | 4.01 ± 0.19 * |
Left Atrium | 4.73 ± 0.20 | 6.17 ± 0.41 * |
Estimated LV mass, g | 1.56 ± 0.32 | 2.03 ± 0.23 * |
Relative wall thickness | 0.45 ± 0.03 | 0.58 ± 0.06 * |
Systolic volume, mL | 23.5 ± 2.8 | 26.6 ± 5.8 |
Shortening Δ% endo | 58.2 ± 3.3 | 52.5 ± 55.3 * |
Shortening Δ% meso | 25.6 ± 2.1 | 25.3 ± 2.7 |
Ejection fraction, % | 0.92 ± 0.01 | 0.89 ± 0.03 * |
Deceleration time, MS | 44.1 ± 7.8 | 53.4 ± 9.4 * |
Ew, m/s | 78.9 ± 8.4 | 77.9 ± 6.6 |
Aw, m/s | 48.7 ± 11.6 | 45.9 ± 14.1 |
E/A, m/s | 1.67 ± 0.27 | 1.85 ± 0.64 |
IRT | 22.9 ± 3.1 | 28.1 ± 4.8 * |
Systolic blood pressure, mmHg | 126 ± 5 | 136 ± 5 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferron, A.J.T.; Francisqueti, F.V.; Minatel, I.O.; Silva, C.C.V.d.A.; Bazan, S.G.Z.; Kitawara, K.A.H.; Garcia, J.L.; Corrêa, C.R.; Moreto, F.; Ferreira, A.L.A. Association between Cardiac Remodeling and Metabolic Alteration in an Experimental Model of Obesity Induced by Western Diet. Nutrients 2018, 10, 1675. https://doi.org/10.3390/nu10111675
Ferron AJT, Francisqueti FV, Minatel IO, Silva CCVdA, Bazan SGZ, Kitawara KAH, Garcia JL, Corrêa CR, Moreto F, Ferreira ALA. Association between Cardiac Remodeling and Metabolic Alteration in an Experimental Model of Obesity Induced by Western Diet. Nutrients. 2018; 10(11):1675. https://doi.org/10.3390/nu10111675
Chicago/Turabian StyleFerron, Artur Junio Togneri, Fabiane Valentini Francisqueti, Igor Otávio Minatel, Carol Cristina Vágula de Almeida Silva, Silméia Garcia Zanati Bazan, Koody André Hassemi Kitawara, Jéssica Leite Garcia, Camila Renata Corrêa, Fernando Moreto, and Ana Lucia A. Ferreira. 2018. "Association between Cardiac Remodeling and Metabolic Alteration in an Experimental Model of Obesity Induced by Western Diet" Nutrients 10, no. 11: 1675. https://doi.org/10.3390/nu10111675
APA StyleFerron, A. J. T., Francisqueti, F. V., Minatel, I. O., Silva, C. C. V. d. A., Bazan, S. G. Z., Kitawara, K. A. H., Garcia, J. L., Corrêa, C. R., Moreto, F., & Ferreira, A. L. A. (2018). Association between Cardiac Remodeling and Metabolic Alteration in an Experimental Model of Obesity Induced by Western Diet. Nutrients, 10(11), 1675. https://doi.org/10.3390/nu10111675