The Effectiveness of a Smartphone Application on Modifying the Intakes of Macro and Micronutrients in Primary Care: A Randomized Controlled Trial. The EVIDENT II Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Overview
2.2. Procedures
2.3. Setting and Participants
2.4. Screening and Randomization
2.5. Intervention
2.5.1 Standardized Nutritional Counseling
2.5.2 The Counseling + Application Group (IG) Intervention
2.6. Main Outcomes
2.7. Other Measurements
2.8. Ethics Approval and Consent to Participate
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants and Follow-up
3.2. Changes in the Intakes of Macro and Micronutrients
3.3. Changes in the Intake of Food Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Materials
Trial Registration
Abbreviations
Abbreviation | Meaning |
CG | counseling group |
FFQ | food frequency questionnaire |
IG | intervention group (counseling + application) |
References
- Forouhi, N.G.; Sattar, N.; Imamura, F. Macronutrients and cardiovascular risk in a global context. Lancet Diabetes Endocrinol. 2017, 5, 758–759. [Google Scholar] [CrossRef]
- Brown, I.J.; Elliott, P.; Robertson, C.E.; Chan, Q.; Daviglus, M.L.; Dyer, A.R.; Huang, C.C.; Rodriguez, B.L.; Sakata, K.; Ueshima, H.; et al. Dietary starch intake of individuals and their blood pressure: The International Study of Macronutrients and Micronutrients and Blood Pressure. J. Hypertens. 2009, 27, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Lindseth, G.; Murray, A. Dietary Macronutrients and Sleep. West. J. Nurs. Res. 2016, 38, 938–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doo, M.; Kim, Y. Association between sleep duration and obesity is modified by dietary macronutrients intake in Korean. Obes. Res. Clin. Pract. 2016, 10, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A systematic review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Carioli, G.; Bravi, F.; Ferraroni, M.; Serraino, D.; Montella, M.; Giacosa, A.; Toffolutti, F.; Negri, E.; Levi, F.; et al. Mediterranean Diet and Breast Cancer Risk. Nutrients 2018, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Spei, M.E.; Polesel, J.; Di Maso, M.; Montella, M.; Ferraroni, M.; Serraino, D.; Libra, M.; Negri, E.; La Vecchia, C.; et al. Mediterranean Diet and Bladder Cancer Risk in Italy. Nutrients 2018, 10, 1061. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; Wang, C.Y. Trends in intake of energy and macronutrients in adults from 1999–2000 through 2007–2008. NCHS Data Brief 2010, 49, 1–8. [Google Scholar]
- Vadiveloo, M.; Scott, M.; Quatromoni, P.; Jacques, P.; Parekh, N. Trends in dietary fat and high-fat food intakes from 1991 to 2008 in the Framingham Heart Study participants. Br. J. Nutr. 2014, 111, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Zhao, J.; Wu, Y.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS. Nutrients 2017, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Eyles, H.; McLean, R.; Neal, B.; Doughty, R.N.; Jiang, Y.; Ni Mhurchu, C. Using mobile technology to support lower-salt food choices for people with cardiovascular disease: Protocol for the SaltSwitch randomized controlled trial. BMC Public Health 2014, 14, 950. [Google Scholar] [CrossRef] [PubMed]
- Giacobbi, P., Jr.; Hingle, M.; Johnson, T.; Cunningham, J.K.; Armin, J.; Gordon, J.S. See Me Smoke-Free: Protocol for a Research Study to Develop and Test the Feasibility of an mHealth App for Women to Address Smoking, Diet, and Physical Activity. JMIR Res. Protoc. 2016, 5, e12. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.L.; Astroth, K.S.; Perkins, S.M.; Johnson, C.S.; Connelly, K.; Siek, K.A.; Jones, J.; Scott, L.L. Using a mobile application to self-monitor diet and fluid intake among adults receiving hemodialysis. Res. Nurs. Health 2013, 36, 284–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuckey, M.I.; Shapiro, S.; Gill, D.P.; Petrella, R.J. A lifestyle intervention supported by mobile health technologies to improve the cardiometabolic risk profile of individuals at risk for cardiovascular disease and type 2 diabetes: Study rationale and protocol. BMC Public Health 2013, 13, 1051. [Google Scholar] [CrossRef] [PubMed]
- Safran Naimark, J.; Madar, Z.; Shahar, D.R. The impact of a Web-based app (eBalance) in promoting healthy lifestyles: Randomized controlled trial. J. Med. Internet Res. 2015, 17, e56. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Whitehead, M.; Sheats, J.Q.; Mastromonico, J.; Hardy, D.; Smith, S.A. Smartphone Applications for Promoting Healthy Diet and Nutrition: A literature review. Jacobs J. Food Nutr. 2015, 2, 021. [Google Scholar] [PubMed]
- Allen, J.K.; Stephens, J.; Dennison Himmelfarb, C.R.; Stewart, K.J.; Hauck, S. Randomized controlled pilot study testing use of smartphone technology for obesity treatment. J. Obes. 2013, 2013, 151597. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.K.; Miller, A.C.; Thomas, D.M.; Champagne, C.M.; Han, H.; Church, T. Efficacy of SmartLossSM, a smartphone-based weight loss intervention: Results from a randomized controlled trial. Obesity (Silver Spring) 2015, 23, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.; Vandelanotte, C.; Kolt, G.S.; Rosenkranz, R.R.; Caperchione, C.M.; George, E.S.; Ding, H.; Hooker, C.; Karunanithi, M.; Maeder, A.J.; et al. Effectiveness of a web- and mobile phone-based intervention to promote physical activity and healthy eating in middle-aged males: Randomized controlled trial of the ManUp study. J. Med. Internet Res. 2014, 16, e136. [Google Scholar] [CrossRef] [PubMed]
- Rabbi, M.; Pfammatter, A.; Zhang, M.; Spring, B.; Choudhury, T. Automated personalized feedback for physical activity and dietary behavior change with mobile phones: A randomized controlled trial on adults. JMIR mHealth uHealth 2015, 3, e42. [Google Scholar] [CrossRef] [PubMed]
- Schoeppe, S.; Alley, S.; Van Lippevelde, W.; Bray, N.A.; Williams, S.L.; Duncan, M.J.; Vandelanotte, C. Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Mummah, S.A.; Mathur, M.; King, A.C.; Gardner, C.D.; Sutton, S. Mobile Technology for Vegetable Consumption: A Randomized Controlled Pilot Study in Overweight Adults. JMIR mHealth uHealth 2016, 4, e51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilliland, J.; Sadler, R.; Clark, A.; O’Connor, C.; Milczarek, M.; Doherty, S. Using a Smartphone Application to Promote Healthy Dietary Behaviours and Local Food Consumption. Biomed. Res. Int. 2015, 2015, 841368. [Google Scholar] [CrossRef] [PubMed]
- Allman-Farinelli, M.; Partridge, S.R.; McGeechan, K.; Balestracci, K.; Hebden, L.; Wong, A.; Phongsavan, P.; Denney-Wilson, E.; Harris, M.F.; Bauman, A. A Mobile Health Lifestyle Program for Prevention of Weight Gain in Young Adults (TXT2BFiT): Nine-month outcomes of a randomized controlled trial. JMIR mHealth uHealth 2016, 4, e78. [Google Scholar] [CrossRef] [PubMed]
- Elbert, S.P.; Dijkstra, A.; Oenema, A. A Mobile Phone App Intervention Targeting Fruit and Vegetable Consumption: The efficacy of textual and auditory tailored health information tested in a randomized controlled trial. J. Med. Internet Res. 2016, 18, e147. [Google Scholar] [CrossRef] [PubMed]
- Wharton, C.M.; Johnston, C.S.; Cunningham, B.K.; Sterner, D. Dietary self-monitoring, but not dietary quality, improves with use of smartphone app technology in an 8-week weight loss trial. J. Nutr. Educ. Behav. 2014, 46, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Nollen, N.L.; Mayo, M.S.; Carlson, S.E.; Rapoff, M.A.; Goggin, K.J.; Ellerbeck, E.F. Mobile technology for obesity prevention: A randomized pilot study in racial- and ethnic-minority girls. Am. J. Prev. Med. 2014, 46, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Hebden, L.; Cook, A.; van der Ploeg, H.P.; King, L.; Bauman, A.; Allman-Farinelli, M. A mobile health intervention for weight management among young adults: A pilot randomised controlled trial. J. Hum. Nutr. Diet 2014, 27, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Gilson, N.D.; Pavey, T.G.; Vandelanotte, C.; Duncan, M.J.; Gomersall, S.R.; Trost, S.G.; Brown, W.J. Chronic disease risks and use of a smartphone application during a physical activity and dietary intervention in Australian truck drivers. Aust. N. Z. J. Public Health 2016, 40, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Tonkin, E.; Brimblecombe, J.; Wycherley, T.P. Characteristics of Smartphone Applications for Nutrition Improvement in Community Settings: A scoping review. Adv. Nutr. 2017, 8, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Recio-Rodriguez, J.I.; Martin-Cantera, C.; Gonzalez-Viejo, N.; Gomez-Arranz, A.; Arietaleanizbeascoa, M.S.; Schmolling-Guinovart, Y.; Maderuelo-Fernandez, J.A.; Perez-Arechaederra, D.; Rodriguez-Sanchez, E.; Gomez-Marcos, M.A.; et al. Effectiveness of a smartphone application for improving healthy lifestyles, a randomized clinical trial (EVIDENT II): Study protocol. BMC Public Health 2014, 14, 254. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ortiz, L.; Recio-Rodriguez, J.I.; Martin-Cantera, C.; Cabrejas-Sanchez, A.; Gomez-Arranz, A.; Gonzalez-Viejo, N.; Iturregui-San Nicolas, E.; Patino-Alonso, M.C.; Gomez-Marcos, M.A.; the EVIDENT Group. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol. BMC Public Health 2010, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Consellería de Sanidade, Xunta de Galicia, España; Organización Panamericana de la salud (OPS-OMS). Epidat: Programa Para Análisis Epidemiológico de Datos; versión 4.2; Universidad CES: Medellín, Colombia, 2016. [Google Scholar]
- Prochaska, J.O.; Velicer, W.F. The transtheoretical model of health behavior change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ballart, J.D.; Pinol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bau, M.; Martinez-Gonzalez, M.A.; Salas-Salvado, J.; Martin-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K. Intention-to-treat concept: A review. Perspect Clin. Res. 2011, 2, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Masulli, M.; Rivellese, A.A.; Babini, A.C.; Boemi, M.; Bonora, E.; Buzzetti, R.; Ciano, O.; Cignarelli, M.; Cigolini, M.; et al. Influence of dietary fat and carbohydrates proportions on plasma lipids, glucose control and low-grade inflammation in patients with type 2 diabetes-The TOSCA.IT Study. Eur. J. Nutr. 2016, 55, 1645–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nettleton, J.A.; Rock, C.L.; Wang, Y.; Jenny, N.S.; Jacobs, D.R. Associations between dietary macronutrient intake and plasma lipids demonstrate criterion performance of the Multi-Ethnic Study of Atherosclerosis (MESA) food-frequency questionnaire. Br. J. Nutr. 2009, 102, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, K.; Iso, H.; Yatsuya, H.; Tanabe, N.; Date, C.; Kikuchi, S.; Yamamoto, A.; Inaba, Y.; Tamakoshi, A. Dietary intake of saturated fatty acids and mortality from cardiovascular disease in Japanese: The Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC) Study. Am. J. Clin. Nutr. 2010, 92, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Marcos, M.A.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Agudo-Conde, C.; Romaguera-Bosch, M.; Magdalena-Gonzalez, O.; Gomez-Arranz, A.; Mendizabal-Gallastegui, N.; Angel Fernandez-Diez, J.; Gomez-Sanchez, L.; et al. Short- and long-term effectiveness of a smartphone application for improving measures of adiposity: A randomised clinical trial—EVIDENT II study. Eur. J. Cardiovasc. Nurs. 2018, 17, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Recio-Rodriguez, J.I.; Agudo-Conde, C.; Martin-Cantera, C.; Gonzalez-Viejo, M.N.; Fernandez-Alonso, M.D.; Arietaleanizbeaskoa, M.S.; Schmolling-Guinovart, Y.; Maderuelo-Fernandez, J.A.; Rodriguez-Sanchez, E.; Gomez-Marcos, M.A.; et al. Short-Term Effectiveness of a Mobile Phone App for Increasing Physical Activity and Adherence to the Mediterranean Diet in Primary Care: A randomized controlled trial (EVIDENT II Study). J. Med. Internet Res. 2016, 18, e331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Egelandsdal, B.; Amdam, G.V.; Almli, V.L.; Oostindjer, M. Diet and Physical Activity Apps: Perceived effectiveness by app users. JMIR mHealth uHealth 2016, 4, e33. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | IG (Advice + Application) (415; 49.8%) | CG (Advice) (418; 50.2%) | ||||
---|---|---|---|---|---|---|
Mean/N | SD/(%) | Mean/N | SD/(%) | p-Value | ||
Age (years) | 51.4 | 12.1 | 52.3 | 12.0 | 0.287 | |
Females (n, %) | 249 | (60.0) | 268 | (64.1) | 0.226 | |
Work situation (n, %) | Works outside of home | 228 | (54.9) | 203 | (48.6) | 0.246 |
Homemaker | 53 | (12.8) | 72 | (17.2) | ||
Retired | 77 | (18.6) | 89 | (21.3) | ||
Student | 10 | (2.4) | 8 | (1.9) | ||
Unemployed | 47 | (11.3) | 46 | (11.0) | ||
Educational level (n, %) | University studies | 117 | (28.2) | 132 | (31.6) | 0.417 |
Middle or high school | 208 | (50.1) | 208 | (49.8) | ||
Elementary school | 90 | (21.7) | 78 | (18.7) | ||
Smoking (n, %) | Non-smoker | 190 | (45.8) | 166 | (39.7) | 0.203 |
Smoker | 94 | (22.7) | 108 | (25.8) | ||
Former smoker | 131 | (31.6) | 144 | (34.4) | ||
BMI mean (Kg/m2) | 28.1 | 5.1 | 27.6 | 4.59 | 0.142 | |
BMI Categories (n, %) | BMI < 25 | 117 | (28.2) | 131 | (31.3) | 0.501 |
BMI 25–30 | 172 | (41.4) | 173 | (41.4) | ||
BMI > 30 | 126 | (30.4) | 114 | (27.3) | ||
Systolic blood pressure (mmHg) | 124 | 16 | 124 | 17 | 0.749 | |
Diastolic blood pressure (mmHg) | 76 | 10 | 76 | 10 | 0.409 | |
Total cholesterol (mg/dL) | 202 | 35 | 206 | 37 | 0.086 | |
Glycated haemoglobin (%) | 5,5 | 0.5 | 5.5 | 0.6 | 0.870 | |
Physical activity | ||||||
Counts min/week | 69.0 | 70.4 | 65.9 | 69.4 | 0.539 | |
METS/ min /week | 1850.8 | 891.7 | 1762.6 | 922.0 | 0.177 | |
Dietary habits stage of change, n (%) | Precontemplation | 34 | 8.3 | 34 | 8.2 | 0.910 |
Contemplation | 26 | 6.3 | 20 | 4.8 | ||
Preparation | 59 | 14.3 | 57 | 13.8 | ||
Action | 18 | 4.4 | 18 | 4.3 | ||
Maintenance | 275 | 66.7 | 285 | 68.8 |
Macro/Micronutrients | Baseline | 3 Months (Difference) | 12 Months (Difference) | |||
---|---|---|---|---|---|---|
IG (Advice + Application) Mean ± SD | CG (Advice) Mean ± SD | IG (Advice + Application) Mean (95% CI) | CG (Advice) Mean (95% CI) | IG (Advice + Application) Mean (95% CI) | CG (Advice) Mean (95% CI) | |
Energy intake (Kcal/day) | 2496 ± 753 | 2450 ± 816 | −63 (−137 to 12) | − 138 (−206 to −69) ** | −114 (−191 to −36) ** | −108 (−184 to − 31) ** |
Carbohydrate (% of energy) | 42.2 ± 6.6 | 42.5 ± 7.4 | 0.2 (−0.5 to 1.0) | −0.8 (−1.5 to −0.1) * | 1.0 (0.1 to 1.9) * | −0.3 (−1.0 to 0.5) |
Protein (% of energy) | 17.6 ± 3.2 | 17.6 ± 3.4 | 0.2 (−0.2 to 0.6) | 0.3 (−0.0 to 0.7) | −0.3 (−0.7 to 0.1) | 0.1 (−0.2 to 0.4) |
Total fat (% of energy) | 37.7 ± 6.4 | 37.3 ± 6.5 | −0.7 (−1.4 to −0.1) * | 0.4 (−0.3 to 1.0) | −1.0 (−1.8 to −0.1) * | 0.3 (−0.4 to 1.0) |
Saturated fat (% of energy) | 11.0 ± 2.7 | 10.8 ± 2.4 | −0.4 (−0.7 to −0.1) ** | −0.2 (−0.4 to 0.1) | −0.6 (−0.9 to −0.3) ** | −0.1 (−0.3 to 0.2) |
Monounsaturated fat (% of energy) | 16.7 ± 3.6 | 16.4 ± 3.9 | −0.4 (−0.8 to 0.0) * | 0.3 (−0.1 to 0.7) | −0.2 (−0.7 to 0.3) | 0.4 (−0.1 to 0.8) |
Polyunsaturated fat (% of energy) | 6.1 ± 2.2 | 6.2 ± 2.2 | 0.0 (−0.2 to 0.3) | 0.2 (−0.0 to 0.4) | −0.1 (−0.4 to 0.1) | 0.0 (−0.2 to 0.3) |
Trans fat (g/day) | 0.79 ± 0.54 | 0.74 ± 0.47 | −0.10 (−0.14 to −0.06) ** | −0.08 (−0.13 to −0.04) ** | −0.14 (−0.18 to −0.10) ** | −0.06 (−0.11 to −0.01) * |
Fiber (g/day) | 27.8 ± 10.9 | 27.9 ± 11.9 | 0.9 (−0.2 to 1.9) | −0.7 (−1.8 to 0.3) | 0.0 (−1.2 to 1.1) | −0.12 (−1.42 to 1.17) |
Cholesterol (mg/day) | 465.0 ± 183.2 | 453.1 ± 170.3 | −15.8 (−33.7 to 2.0) | −17.6 (−33.4 to −1.9) * | −48.1 (−67.9 to −28.2) ** | −24.4 (−42.9 to −6.0) ** |
Alcohol (g/day) | 9.2 ± 13.8 | 9.0 ± 14.2 | 0.4 (−0.6 to 1.4) | −0.1 (−1.0 to 0.7) | 0.4 (−0.6 to 1.5) | −1.1 (−2.2 to 0.1) |
Ω3 (g/day) | 1.1 ± 0.6 | 1.1 ± 0.6 | 0.0 (−0.1 to 0.1) | 0.0 (−0.0 to 0.1) | 0.0 (−0.1 to 0.1) | 0.0 (−0.1 to 0.1) |
Ω6 (g/day) | 13.3 ± 7.5 | 13.2 ± 8.2 | −0.5 (−1.3 to 0.3) | −0.4 (−1.2 to 0.4) | −1.1 (−2.0 to −0.2) * | −0.7 (−1.6 to 0.2) |
Calcium (mg/day) | 1172 ± 409 | 1144 ± 421 | −7 (−47 to 34) | −34 (−71 to 2) | −45 (−89 to −1.0) * | −10 (−54 to 33) |
Folate (µg/day) | 411.8 ± 146.1 | 414.8 ± 175.9 | 15.0 (0 to 30.0) * | −4.8 (−19.8 to 10.1) | 0.3 (−15.5 to 16.2) | 7.2 (−12.9 to 27.3) |
Vitamin C (mg/day) | 245.0 ± 124.3 | 244.9 ± 133.3 | 5.9 (−6.9 to 18.8) | 3.3 (−7.5 to 14.0) | 0.9 (−12.6 to 14.3) | 3.2 (−11.0 to 17.3) |
β-Carotene (µg/day) | 3338 ± 2272 | 3564 ± 2725 | 387 (78 to 696) * | 118 (−161 to 396) | 137 (−134 to 407) | 94 (−185 to 373) |
Macro/Micronutrients | Mean Difference (IG – CG) 3 Months | Mean Difference (IG – CG) 12 Months | ||
---|---|---|---|---|
Mean Difference (CI 95%) | p-Value | Mean Difference (CI 95%) | p-Value | |
Energy intake (Kcal/day) | 90 (2 to 177) | 0.044 | 1 (−92 to 94) | 0.983 |
Carbohydrate (% of energy) | 0.8 (−0.1 to 1.6) | 0.091 | 1.1 (0.1 to 2.0) | 0.023 |
Protein (% of energy) | −0.1 (−0.5 to 0.3) | 0.668 | −0.4 (−0.8 to 0.1) | 0.097 |
Total fat (% of energy) | −0.9 (−1.7 to 0.0) | 0.043 | −1.0 (−1.9 to −0.1) | 0.022 |
Saturated fat (% of energy) | −0.1 (−0.5 to 0.2) | 0.427 | −0.4 (−0.8 to −0.1) | 0.007 |
Monounsaturated fat (% of energy) | −0.5 (−1.0 to 0.0) | 0.042 | −0.3 (−0.9 to 0.3) | 0.292 |
Polyunsaturated fat (% of energy) | −0.18 (−0.4 to 0.1) | 0.222 | −0.2 (−0.5 to 0.1) | 0.204 |
Trans fat (g/day) | 0.00 (−0.05 to 0.06) | 0.812 | −0.07 (−0.12 to −0.01) | 0.013 |
Fiber (g/day) | 1.58 (0.27 to 2.89) | 0.018 | 0.13 (−1.43 to 1.69) | 0.869 |
Cholesterol (mg/day) | 4.3 (−16.2 to 24.7) | 0.682 | −16.6 (−38.2 to 5.0) | 0.131 |
Alcohol (g/day) | 0.6 (−0.6 to 1.8) | 0.326 | 1.3 (−0.1 to 2.7) | 0.063 |
Ω3 (g/day) | −0.0 (−0.1 to 0.1) | 0.893 | −0.0 (−0.1 to 0.1) | 0.436 |
Ω6 (g/day) | 0.0 (−0.9 to 1.0) | 0.955 | −0.4 (−1.4 to 0.6) | 0.402 |
Calcium (mg/day) | 35 (−14 to 83) | 0.163 | −22 (−76 to 33) | 0.435 |
Folate (µg/day) | 20.5 (1.4 to 39.5) | 0.035 | −5.0 (−28.5 to 18.6) | 0.679 |
Vitamin C (mg/day) | 3.8 (−11.4 to 19.0) | 0.621 | 1.1 (−15.8 to 18.0) | 0.899 |
β-Carotene (µg/day) | 178 (−202 to 557) | 0.358 | −3 (−343 to 336) | 0.985 |
Food Group | Baseline | 3 Months (Difference) | 12 Months (Difference) | |||
---|---|---|---|---|---|---|
IG (Advice + Application) Mean ± SD | CG (Advice) Mean ± SD | IG (Advice + Application) Mean (95% CI) | CG (Advice) Mean (95% CI) | IG (Advice + Application) Mean (95% CI) | CG (Advice) Mean (95% CI) | |
Vegetables (g/day) | 294.4 ± 160.4 | 299.1 ± 171.1 | 12.0 (−4.0 to 8.1) | 7.1 (−7.7 to 22.0) | −6.5 (−25.4 to 12.3) | 5.6 (−13.2 to 24.3) |
Fresh fruit (g/day) | 356.3 ± 214.8 | 361.5 ± 235.2 | 14.9 (−12.6 to 42.4) | 7.4 (−15.4 to 30.1) | 14.0 (−14.5 to 42.5) | −1.3 (−27.9 to 25.3) |
Whole-grains (g/day) | 28.3 ± 58.5 | 26.2 ± 57.5 | 4.5 (−0.4 to 9.4) | −0.5 (−5.2 to 4.2) | 0.7 (−5.3 to 6.8) | −1.0 (−6.3 to 4.3) |
Pulses (g/day) | 25.6 ± 15.2 | 25.1 ± 14.3 | 0.1 (−1.6 to 1.8) | −1.0 (−2.5 to 0.5) | 2.1 (−0.16 to 4.3) | 0.5 (−1.3 to 2.3) |
Olive oil (g/day) | 25.0 ± 16.0 | 24.2 ± 17.0 | −1.3 (−3.0 to 0.5) | 0.0 (−1.7 to 1.8) | 0.8 (−1.3 to 2.9) | 1.1 (−0.8 to 3.0) |
Fish (g/day) | 110.4 ± 59.3 | 116.7 ± 62.5 | 6.9 (−0.7 to 14.5) | 4.9 (−3.6 to 13.3) | −3.4 (−10.5 to 3.8) | −1.5 (−8.8 to 5.8) |
Nuts (g/day) | 13.4 ± 18.9 | 14.3 ± 20.7 | 1.4 (−0.7 to 3.5) | 1.9 (−0.3 to 4.0) | 0.4 (−2.0 to 2.9) | 1.0 (−1.2 to 3.3) |
Dairy (g/day) | 388.7 ± 209.9 | 379.6 ± 225.3 | 6.9 (−13.0 to 26.9) | −15.0 (−34.5 to 4.4) | −9.5 (−32.3 to 13.4) | 1.7 (−20.6 to 23.9) |
Industrial pastries (g/day) | 32.1 ± 40.8 | 32.6 ± 46.0 | −3.4 (−7.0 to 0.1) | −5.3 (−9.5 to −1.1) * | −4.0 (−8.3 to 0.3) | −1.9 (−6.8 to 2.9) |
Red meat (g/day) | 68.9 ± 47.0 | 66.6 ± 44.2 | −4.3 (−9.0 to 0.5) | −6.3 (−10.9 to −1.7) ** | −8.2 (−13.5 to −3.0) ** | −5.7 (−10.4 to −1.0) * |
White meat (g/day) | 71.3 ± 49.1 | 65.8 ± 41.0 | −2.0 (−8.2 to 4.2) | 3.0 (−1.5 to 7.6) | −7.4 (−12.6 to −2.2) ** | −1.1 (−5.4 to 3.2) |
Processed meat (g/day) | 36.5 ± 29.0 | 33.0 ± 24.7 | −4.3 (−7.4 to −1.2) ** | −4.6 (−6.8 to −2.4) ** | −9.1 (−11.9 to −6.2) ** | −3.0 (−5.7 to −0.4) * |
Ready-made food (g/day) | 14.6 ± 19.4 | 13.9 ± 19.2 | −1.0 (−2.8 to 0.8) | −1.4 (−3.1 to 0.2) | −1.7 (−3.7 to 0.4) | −2.0 (−3.8 to −0.2) * |
Food Group | Mean Difference (IG – CG) 3 Months | Mean Difference (IG – CG) 12 Months | ||
---|---|---|---|---|
Mean Difference (CI 95%) | p-Value | Mean Difference (CI 95%) | p-Value | |
Vegetables (g/day) | 5.8 (−14.1 to 25.7) | 0.569 | −7.7 (−31.6 to 16.3) | 0.529 |
Fresh fruit (g/day) | 7.4 (−25.3 to 40.1) | 0.655 | 16.2 (−19.1 to 51.5) | 0.367 |
Whole-grains (g/day) | 5.6 (−0.3 to 11.4) | 0.063 | 2.0 (−4.1 to 8.2) | 0.516 |
Pulses (g/day) | 1.1 (−0.8 to 3.1) | 0.257 | 1.7 (−0.8 to 4.3) | 0.181 |
Olive oil (g/day) | −0.8 (−2.9 to 1.4) | 0.482 | 0.4 (−2.0 to 2.7) | 0.757 |
Fish (g/day) | −0.4 (−11.2 to 10.3) | 0.940 | −3.8 (−12.4 to 4.8) | 0.392 |
Nuts (g/day) | −0.7 (−3.2 to 1.9) | 0.613 | −1.2 (−4.0 to 1.6) | 0.407 |
Dairy (g/day) | 21.6 (−3.4 to 46.6) | 0.090 | −7.7 (−36.0 to 20.7) | 0.596 |
Industrial pastries (g/day) | 0.8 (−3.2 to 4.9) | 0.685 | −2.9 (−7.9 to 2.0) | 0.248 |
Red meat (g/day) | 3.7 (−1.5 to 8.9) | 0.165 | −1.2 (−6.5 to 4.1) | 0.663 |
White meat (g/day) | −1.2 (−7.8 to 5.5) | 0.732 | −3.4 (−8.5 to 1.6) | 0.184 |
Processed meat (g/day) | 2.4 (−0.7 to 5.5) | 0.127 | −4.3 (−7.1 to −1.5) | 0.003 |
Ready-made food (g/day) | 1.1 (−0.7 to 2.9) | 0.218 | 0.4 (−1.3 to 2.2) | 0.619 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recio-Rodriguez, J.I.; Agudo Conde, C.; Calvo-Aponte, M.J.; Gonzalez-Viejo, N.; Fernandez-Alonso, C.; Mendizabal-Gallastegui, N.; Rodriguez-Martin, B.; Maderuelo-Fernandez, J.A.; Rodriguez-Sanchez, E.; Gomez-Marcos, M.A.; et al. The Effectiveness of a Smartphone Application on Modifying the Intakes of Macro and Micronutrients in Primary Care: A Randomized Controlled Trial. The EVIDENT II Study. Nutrients 2018, 10, 1473. https://doi.org/10.3390/nu10101473
Recio-Rodriguez JI, Agudo Conde C, Calvo-Aponte MJ, Gonzalez-Viejo N, Fernandez-Alonso C, Mendizabal-Gallastegui N, Rodriguez-Martin B, Maderuelo-Fernandez JA, Rodriguez-Sanchez E, Gomez-Marcos MA, et al. The Effectiveness of a Smartphone Application on Modifying the Intakes of Macro and Micronutrients in Primary Care: A Randomized Controlled Trial. The EVIDENT II Study. Nutrients. 2018; 10(10):1473. https://doi.org/10.3390/nu10101473
Chicago/Turabian StyleRecio-Rodriguez, Jose I., Cristina Agudo Conde, Maria J. Calvo-Aponte, Natividad Gonzalez-Viejo, Carmen Fernandez-Alonso, Nere Mendizabal-Gallastegui, Beatriz Rodriguez-Martin, Jose A. Maderuelo-Fernandez, Emiliano Rodriguez-Sanchez, Manuel A. Gomez-Marcos, and et al. 2018. "The Effectiveness of a Smartphone Application on Modifying the Intakes of Macro and Micronutrients in Primary Care: A Randomized Controlled Trial. The EVIDENT II Study" Nutrients 10, no. 10: 1473. https://doi.org/10.3390/nu10101473
APA StyleRecio-Rodriguez, J. I., Agudo Conde, C., Calvo-Aponte, M. J., Gonzalez-Viejo, N., Fernandez-Alonso, C., Mendizabal-Gallastegui, N., Rodriguez-Martin, B., Maderuelo-Fernandez, J. A., Rodriguez-Sanchez, E., Gomez-Marcos, M. A., Garcia-Ortiz, L., & On Behalf of the EVIDENT Investigators. (2018). The Effectiveness of a Smartphone Application on Modifying the Intakes of Macro and Micronutrients in Primary Care: A Randomized Controlled Trial. The EVIDENT II Study. Nutrients, 10(10), 1473. https://doi.org/10.3390/nu10101473