Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design, Animals and Diabetes Induction
2.2. Glucose and Fructosamine Concentration in the Serum
2.3. Enzymes and Sugars Related to Polyol Pathway in the Lens
2.4. Total and Soluble Protein in the Lens
2.5. Advanced Glycation End Products and Total Sulfhydryl Groups in the Lens
2.6. Enzymatic Oxidative Stress Parameters in the Lens
2.7. Non-Enzymatic Oxidative Stress Parameters Content in the Lens
2.8. Total Oxidant Status and Total Antioxidant Response in the Lens
2.9. Results Analysis
3. Results
3.1. Effect of Resveratrol on the Body Mass and Lens Mass in Diabetic Rats
3.2. Effect of Resveratrol on the Blood Glucose Concentration and Blood Fructosamine Concentration
3.3. Effect of Resveratrol on Polyol Pathway in the Lens of the Diabetic Rats
3.4. Effect of Resveratrol on the Advanced Glycation End Products (AGEs) Content and Sulfhydryl Group (-SH Groups) Content in the Lens of the Diabetic Rats
3.5. The Effect of Resveratrol on the Total and Soluble Protein Content in the Lens of the Diabetic Rats
3.6. Effect of Resveratrol on the Enzymatic Oxidative Stress Parameters in the Lens of the Diabetic Rats
3.7. Effect of Resveratrol on the Non-Enzymatic Oxidative Stress Parameters Content in the Lens of the Diabetic Rats
3.8. Effect of Resveratrol on the Total Antioxidant Reactivity (TAR) Total Antioxidant Reactivity (TAR) and Total Oxidant Status (TOS) in the Lens of the Diabetic Rats
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr. 2016, 7, 706–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Chalam, K.V. Resveratrol and Ophthalmic Diseases. Nutrients 2016, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Pintea, A.; Rugină, D.; Pop, R.; Bunea, A.; Socaciu, C.; Diehl, H.A. Antioxidant effect of trans-resveratrol in cultured human retinal pigment epithelial cells. J. Ocul. Pharmacol. Ther. 2011, 27, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.M.; Alcaín, F.J. Sirtuin activators and inhibitors. Biofactors 2012, 38, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doganay, S.; Borazan, M.; Iraz, M.; Cigremis, Y. The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr. Eye Res. 2006, 31, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.; Li, G.; Liton, P.B.; Qiu, J.; Epstein, D.L.; Challa, P.; Gonzalez, P. Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells. Food Chem. Toxicol. 2009, 47, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Wang, L.; Huang, K.; Zheng, L. Endoplasmic reticulum stress in retinal vascular degeneration: Protective role of resveratrol. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Losso, J.N.; Truax, R.E.; Richard, G. trans-Resveratrol inhibits hyperglycaemia-induced inflammation and connexin downregulation in retinal pigment epithelial cells. J. Agric. Food Chem. 2010, 58, 8246–8252. [Google Scholar] [CrossRef] [PubMed]
- Van Ginkel, P.R.; Darjatmoko, S.R.; Sareen, D.; Subramanian, L.; Bhattacharya, S.; Lindstrom, M.J.; Albert, D.M.; Polans, A.S. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Sareen, D.; van Ginkel, P.R.; Takach, J.C.; Mohiuddin, A.; Darjatmoko, S.R.; Albert, D.M.; Polans, A.S. Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3708–3716. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Suh, E.S. Retinal protective effects of resveratrol via modulation of nitric oxide synthase on oxygen-induced retinopathy. Korean J. Ophthalmol. 2010, 24, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Moussa, S.A. Oxidative stress in diabetes mellitus. Romanian J. Biophys. 2008, 18, 225–236. [Google Scholar]
- Rolo, A.P.; Palmeira, C.M. Diabetes and mitochondrial function: Role of hyperglycaemia and oxidative stress. Toxicol. Appl. Pharmacol. 2006, 212, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Sayin, N.; Kara, N.; Pekel, G. Ocular complications of diabetes mellitus. World J. Diabetes 2015, 6, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Pollreisz, A.; Schmidt-Erfurth, U. Diabetic cataract - pathogenesis, epidemiology and treatment. J. Ophthalmol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001, 50, 536–546. [Google Scholar]
- Yümün, G.; Kahaman, C.; Kahaman, N.; Yalçınkaya, U.; Akçılar, A.; Akgül, E.; Vural, A.H. Effects of hyperbaric oxygen therapy combined with platelet-rich plasma on diabetic wounds: An experimental rat model. Arch. Med. Sci. 2016, 12, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Kumar, R.; Kumar, M.; Sairam, K.; Hemalatha, S. Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell. Asian Pac. J. Trop. Biomed. 2012, 2, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Jagota, S.K.; Dani, H.M. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Varsha, M.K.S.; Raman, T.; Manikandan, R. Inhibition of diabetic-cataract by vitamin K1 involves modulation of hyperglycaemia-induced alterations to lens calcium homeostasis. Exp. Eye Res. 2014, 128, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarczyk-Sedlak, I.; Folwarczna, J.; Sedlak, L.; Zych, M.; Wojnar, W.; Szumińska, I.; Wyględowska-Promieńska, D.; Mrukwa-Kominek, E. Effect of caffeine on the biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes. Arch. Med. Sci. 2018, in press. [Google Scholar]
- Wojnar, W.; Kaczmarczyk-Sedlak, I.; Zych, M. Diosmin ameliorates the effects of oxidative stress in lenses of streptozotocin-induced type 1 diabetic rats. Pharmacol. Rep. 2017, 69, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Ciddi, V.; Dodda, D. Therapeutic potential of resveratrol in diabetic complications: In vitro and in vivo studies. Pharmacol. Rep. 2014, 66, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.Y.; Giridharan, N.V.; Reddy, G.B. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats. Mol. Vis. 2012, 18, 495–503. [Google Scholar] [PubMed]
- Kalousová, M.; Skrha, J.; Zima, T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol. Res. 2002, 51, 597–604. [Google Scholar] [PubMed]
- Suryanarayana, P.; Saraswat, M.; Mrudula, T.; Krishna, P.T.; Krishnaswamy, K.; Reddy, G.B. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive and resilient. Exp. Diabetes Res. 2007. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.A.; Suryanarayana, P.; Putcha, U.K.; Srinivas, M.; Reddy, G.B. Evaluation of neonatal streptozotocin induced diabetic rat model for the development of cataract. Oxid. Med. Cell Longev. 2014. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Moradi, M.N.; Khyripour, N.; Goodarzi, M.T.; Mahmoodi, M. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in type 2 diabetic rats. Biol. Trace Elem. Res. 2017, 177, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Ates, O.; Cayli, S.R.; Yucel, N.; Altinoz, E.; Kocak, A.; Durak, M.A.; Turkoz, Y.; Yologlu, S. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J. Clin. Neurosci. 2007, 14, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Elbe, H.; Vardi, N.; Esrefoglu, M.; Ates, B.; Yologlu, S.; Taskapan, C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin and resveratrol in rats. Hum. Exp. Toxicol. 2015, 34, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Sadi, G.; Konat, D. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm. Biol. 2016, 54, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Schmatz, R.; Perreira, L.B.; Stefanello, N.; Mazzanti, C.; Spanevello, R.; Gutierres, J.; Bagatini, M.; Martins, C.C.; Abdalla, F.H.; Daci da Silva Serres, J. Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie 2012, 94, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wan, Z.; Qiu, X.F.; Chen, Y.; Dai, Y.T. Resveratrol, an activator of SIRT1, restores erectile function in streptozotocin-induced diabetic rats. Asian J. Androl. 2013, 15, 646–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Liu, Y.; Ren, G.; Yin, L.; Liang, X.; Geng, T.; Dang, H.; An, R. Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res. 2016, 1650, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Anjaneyulu, M.; Kulkarni, S.K.; Chopra, K. Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology 2006, 76, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Venturini, C.D.; Merlo, S.; Souto, A.A.; Fernandes Mda, C.; Gomez, R.; Rhoden, C.R. Resveratrol and red wine function as antioxidants in the nervous system without cellular proliferative effects during experimental diabetes. Oxid. Med. Cell Longev. 2010, 3, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, H.; Alany, R.G.; Pierscionek, B. Age-related cataract and drug therapy: Opportunities and challenges for topical antioxidant delivery to the lens. J. Pharm. Pharmacol. 2015, 67, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Shearer, T.R.; David, L.L. Role of calcium in selenium cataract. Curr. Eye Res. 1982, 2, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhang, Q.; Tan, S. Inhibitory effect of r-hirudin variant III on streptozotocin-induced diabetic cataracts in rats. Sci. World J. 2013, 630651, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, M.; Suryanarayana, P.; Reddy, P.Y.; Patil, M.A.; Balakrishna, N.; Reddy, G.B. Antiglycating potential of Zingiber officinalis and delay of diabetic cataract in rats. Mol. Vis. 2010, 16, 1525–1537. [Google Scholar] [PubMed]
- Bagatini, P.B.; Xavier, L.L.; Bertoldi, K.; Moysés, F.; Lovatel, G.; Neves, L.T.; Barbosa, S.; Saur, L.; de Senna, P.N.; Souto, A.A. An evaluation of aversive memory and hippocampal oxidative status in streptozotocin-induced diabetic rats treated with resveratrol. Neurosci. Lett. 2017, 636, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, M.; Karimi, J.; Sheikh, N.; Goodarzi, M.T.; Saidijam, M.; Khodadadi, I.; Moridi, H. Effects of resveratrol on receptor for advanced glycation end products (RAGE) expression and oxidative stress in the liver of rats with type 2 diabetes. Phytother. Res. 2016, 30, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Moridi, H.; Karimi, J.; Sheikh, N.; Goodarzi, M.T.; Saidijam, M.; Yadegarazari, R.; Khazaei, M.; Khodadadi, I.; Tavilani, H.; Piri, H. Resveratrol-dependent down-regulation of receptor for advanced glycation end-products and oxidative stress in kidney of rats with diabetes. Int. J. Endocrinol. Metab. 2015, 13, E23542. [Google Scholar] [CrossRef] [PubMed]
- Roghani, M.; Baluchnejadmojarad, T. Mechanisms underlying vascular effect of chronic resveratrol in streptozotocin-diabetic rats. Phytother. Res. 2010, 24, S148–S154. [Google Scholar] [CrossRef] [PubMed]
- Faid, I.; Al-Hussaini, H.; Kilarkaje, N. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats. Toxicol. Appl. Pharmacol. 2015, 289, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, E.; Arslan, A.K.K.; Yerer, M.B.; Bishayee, A. Resveratrol and diabetes: A critical review of clinical studies. Biomed. Pharmacother. 2017, 95, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, C.S.; Vang, O. Challenges in analyzing the biological effects of resveratrol. Nutrients 2016, 8, 353. [Google Scholar] [CrossRef] [PubMed]
- Hamadi, N.; Mansour, A.; Hassan, M.H.; Khalifi-Touhami, F.; Badary, O. Ameliorative effects of resveratrol on liver injury in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 2012, 26, 384–392. [Google Scholar] [CrossRef] [PubMed]
Parameter/Group | C | D | D+R10 | D+R20 |
---|---|---|---|---|
Initial body mass (g) | 281.2 ± 3.8 | 283.2 ± 6.2 | 282.0 ± 3.7 | 276.6 ± 5.5 |
Start body mass (g) | 312.8 ± 5.9 | 250.2 ± 8.7 *** | 239.4 ± 4.9 *** | 242.8 ± 6.6 *** |
Final body mass (g) | 344.9 ± 5.5 | 228.2 ± 10.9 *** | 212.2 ± 5.7 *** | 228.1 ± 7.4 *** |
Body mass gain (g) | 32.1 ± 2.8 | −22.0 ± 5.1 *** | −27.2 ± 4.9 *** | −14.7 ± 3.5 *** |
Lens mass (mg) | 47.2 ± 0.5 | 42.9 ± 1.7 *** | 42.8 ± 0.4 *** | 43.7 ± 0.5 *** |
Glucose in the blood (mg/dL) | 141.4 ± 11.0 | 641.9 ± 28.6 *** | 613.9 ± 55.5 *** | 641.7 ± 51.6 *** |
Fructosamine in the blood (µmol/L albumin) | 275.1 ± 8.1 | 498.4 ± 21.3 *** | 489.7 ± 19.4 *** | 471.5 ± 54.7 ** |
Parameter/Group | C | D | D+R10 | D+R20 |
---|---|---|---|---|
Glucose in the lens (mg/g lens) | 0.16 ± 0.03 | 0.83 ± 0.07 *** | 1.02 ± 1.00 *** | 0.80 ± 0.07 *** |
Sorbitol (µmol/g lens) | 1.26 ± 0.05 | 30.10 ± 0.47 *** | 29.42 ± 0.70 *** | 30.73 ± 0.66 *** |
Fructose in the lens (µmol/g lens) | 0.08 ± 0.01 | 0.13 ± 0.01 *** | 0.14 ± 0.01 *** | 0.13 ± 0.01 *** |
Aldose reductase (nmol/min/mg protein) | 0.085 ± 0.003 | 0.107 ± 0.008 * | 0.102 ± 0.003 ** | 0.109 ± 0.005 * |
Sorbitol dehydrogenase (µU/mg protein) | 1.94 ± 0.18 | 3.01 ± 0.34 * | 2.33 ± 0.14 | 2.67 ± 0.15 * |
AGEs (µg/g lens) | 5.80 ± 0.32 | 10.17 ± 0.29 *** | 10.30 ± 0.12 *** | 9.94 ± 0.50 *** |
-SH groups (nmol/g lens) | 3.63 ± 0.13 | 3.09 ± 0.15 | 3.38 ± 0.20 | 3.91 ± 0.34 |
Parameter/Group | C | D | D+R10 | D+R20 |
---|---|---|---|---|
Total protein (mg/g lens) | 563.2 ± 33.2 | 536.4 ± 43.6 | 511.5 ± 13.4 | 559.8 ± 26.9 |
Soluble protein (mg/g lens) | 443.8 ± 8.4 | 408.5 ± 13.9 * | 453.5 ± 8.6 ^ | 428.0 ± 12.0 |
Parameter/Group | C | D | D+R10 | D+R20 |
---|---|---|---|---|
GSH (µmol/g lens) | 4.10 ± 0.61 | 0.78 ± 0.13 *** | 0.75 ± 0.11 *** | 0.74 ± 0.10 *** |
Vitamin C (µg/g lens) | 7.69 ± 0.05 | 7.17 ± 0.02 * | 7.20 ± 0.02 * | 7.21 ± 0.06 * |
Calcium (µg/g lens) | 42.6 ± 2.1 | 53.8 ± 3.1 * | 60.3 ± 2.5 ** | 50.4 ± 4.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedlak, L.; Wojnar, W.; Zych, M.; Wyględowska-Promieńska, D.; Mrukwa-Kominek, E.; Kaczmarczyk-Sedlak, I. Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes. Nutrients 2018, 10, 1423. https://doi.org/10.3390/nu10101423
Sedlak L, Wojnar W, Zych M, Wyględowska-Promieńska D, Mrukwa-Kominek E, Kaczmarczyk-Sedlak I. Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes. Nutrients. 2018; 10(10):1423. https://doi.org/10.3390/nu10101423
Chicago/Turabian StyleSedlak, Lech, Weronika Wojnar, Maria Zych, Dorota Wyględowska-Promieńska, Ewa Mrukwa-Kominek, and Ilona Kaczmarczyk-Sedlak. 2018. "Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes" Nutrients 10, no. 10: 1423. https://doi.org/10.3390/nu10101423
APA StyleSedlak, L., Wojnar, W., Zych, M., Wyględowska-Promieńska, D., Mrukwa-Kominek, E., & Kaczmarczyk-Sedlak, I. (2018). Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes. Nutrients, 10(10), 1423. https://doi.org/10.3390/nu10101423