Dietary Carotenoid Intakes and Prostate Cancer Risk: A Case-Control Study from Vietnam
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Nutrient or Food | Reference Group Controls | Grade ‡ | p for Heterogeneity | |||
---|---|---|---|---|---|---|
Low-Medium | Adjusted OR † (95% CI) | High | Adjusted OR † (95% CI) | |||
Lycopene (μg/day) | ||||||
<648 | 136 | 37 | 1.00 reference | 40 | 1.00 reference | |
648–1200 | 137 | 52 | 0.65 (0.35, 1.19) | 72 | 1.03 (0.58, 1.86) | |
>1200 | 135 | 21 | 0.36 (0.18, 0.7) | 22 | 0.57 (0.29, 1.12) | |
p for linear trend | 0.003 | 0.104 | 0.338 | |||
α-carotene (μg/day) | ||||||
<743 | 136 | 38 | 1.00 reference | 51 | 1.00 reference | |
743–976 | 136 | 49 | 1.19 (0.69, 2.06) | 56 | 1.19 (0.7, 2.02) | |
>976 | 136 | 23 | 0.72 (0.38, 1.37) | 27 | 0.81 (0.43, 1.5) | |
p for linear trend | 0.322 | 0.511 | 0.808 | |||
β-carotene (μg/day) | ||||||
<3920 | 137 | 37 | 1.00 reference | 37 | 1.00 reference | |
3920–5780 | 135 | 48 | 1 (0.57, 1.76) | 72 | 1.92 (1.11, 3.38) | |
>5780 | 136 | 25 | 0.6 (0.31, 1.12) | 25 | 0.81 (0.42, 1.57) | |
p for linear trend | 0.118 | 0.426 | 0.511 | |||
β-cryptoxanthin (μg/day) | ||||||
<539 | 137 | 28 | 1.00 reference | 34 | 1.00 reference | |
539–867 | 135 | 46 | 1.44 (0.8, 2.62) | 54 | 1.98 (1.1, 3.63) | |
>867 | 136 | 36 | 1.11 (0.6, 2.07) | 46 | 1.53 (0.83, 2.84) | |
p for linear trend | 0.737 reference | 0.178 | 0.468 | |||
Lutein + zeaxanthin (μg/day) | ||||||
<1670 | 137 | 35 | 1.00 reference | 34 | 1.00 reference | |
1670–2580 | 135 | 49 | 1.15 (0.66, 2) | 73 | 2.2 (1.26, 3.91) | |
>2580 | 136 | 26 | 0.59 (0.31, 1.1) | 27 | 0.88 (0.46, 1.69) | |
p for linear trend | 0.099 | 0.684 | 0.388 | |||
Tomato (g/day) | ||||||
<7.1 | 137 | 40 | 1.00 reference | 47 | 1.00 reference | |
7.1–16.5 | 135 | 48 | 0.64 (0.36, 1.14) | 66 | 0.73 (0.42, 1.26) | |
>16.5 | 136 | 22 | 0.41 (0.21, 0.77) | 21 | 0.38 (0.19, 0.72) | |
p for linear trend | 0.006 | 0.003 | 0.861 | |||
Carrot (g/day) | ||||||
<1 | 137 | 44 | 1.00 reference | 67 | 1.00 reference | |
1–3.2 | 135 | 48 | 0.76 (0.43, 1.32) | 46 | 0.5 (0.29, 0.85) | |
>3.2 | 136 | 18 | 0.36 (0.18, 0.69) | 21 | 0.37 (0.2, 0.68) | |
p for linear trend | 0.003 | 0.002 | 0.935 | |||
Pumpkin (g/day) | ||||||
<6.4 | 137 | 33 | 1.00 reference | 36 | 1.00 reference | |
6.4–20.5 | 135 | 45 | 0.92 (0.52, 1.63) | 56 | 1.19 (0.67, 2.11) | |
>20.5 | 136 | 32 | 0.72 (0.39, 1.32) | 42 | 0.94 (0.52, 1.7) | |
p for linear trend | 0.296 | 0.834 | 0.543 | |||
Sweet potato (g/day) | ||||||
<2.4 | 137 | 24 | 1.00 reference | 27 | 1.00 reference | |
2.4–7.7 | 135 | 31 | 0.71 (0.35, 1.43) | 45 | 1.02 (0.52, 2.04) | |
>7.7 | 136 | 55 | 1.25 (0.64, 2.43) | 62 | 1.43 (0.73, 2.84) | |
p for linear trend | 0.506 | 0.304 | 0.774 | |||
Watermelon (g/day) | ||||||
<4.5 | 137 | 22 | 1.00 reference | 24 | 1.00 reference | |
4.5–17.6 | 135 | 56 | 1.87 (1.01, 3.52) | 76 | 2.43 (1.32, 4.57) | |
>17.6 | 136 | 32 | 1.19 (0.62, 2.33) | 34 | 1.33 (0.68, 2.63) | |
p for linear trend | 0.603 | 0.415 | 0.819 | |||
Citrus fruit (g/day) | ||||||
<1.3 | 137 | 23 | 1.00 reference | 28 | 1.00 reference | |
1.3–6 | 135 | 59 | 1.6 (0.83, 3.13) | 74 | 1.98 (1.06, 3.76) | |
>6 | 136 | 28 | 0.83 (0.42, 1.67) | 32 | 0.93 (0.47, 1.83) | |
p for linear trend | 0.601 | 0.809 | 0.654 |
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.; Goggins, W.B.; Wang, H.H.; Fung, F.D.; Leung, C.; Wong, S.Y.; Ng, C.F.; Sung, J.J. Global incidence and mortality for prostate cancer: Analysis of temporal patterns and trends in 36 countries. Eur. Urol. 2016, 70, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Aronson, W.; Freedland, S.J. An update of research evidence on nutrition and prostate cancer. Urol. Oncol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cornago, A.; Travis, R.C.; Appleby, P.N.; Tsilidis, K.K.; Tjonneland, A.; Olsen, A.; Overvad, K.; Katzke, V.; Kuhn, T.; Trichopoulou, A.; et al. Fruit and vegetable intake and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 2017, 141, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Appleby, P.N.; Travis, R.C.; Albanes, D.; Alberg, A.J.; Barricarte, A.; Black, A.; Boeing, H.; Bueno-de-Mesquita, H.B.; Chan, J.M.; et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: Pooled analysis of 15 studies. Am. J. Clin. Nutr. 2015, 102, 1142–1157. [Google Scholar] [CrossRef] [PubMed]
- Young, C.Y.; Yuan, H.Q.; He, M.L.; Zhang, J.Y. Carotenoids and prostate cancer risk. Mini Rev. Med. Chem. 2008, 8, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.M.; Giovannucci, E.L. Vegetables, fruits, associated micronutrients, and risk of prostate cancer. Epidemiol. Rev. 2001, 23, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, N.I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci. 1998, 854, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Rafi, M.M.; Kanakasabai, S.; Reyes, M.D.; Bright, J.J. Lycopene modulates growth and survival associated genes in prostate cancer. J. Nutr. Biochem. 2013, 24, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Nash, S.H.; Till, C.; Song, X.; Lucia, M.S.; Parnes, H.L.; Thompson, I.M., Jr.; Lippman, S.M.; Platz, E.A.; Schenk, J. Serum retinol and carotenoid concentrations and prostate cancer risk: Results from the Prostate Cancer Prevention Trial. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, H.A.; Shroff, M.R.; Mohan, R.; Beydoun, M.A. Associations of serum vitamin A and carotenoid levels with markers of prostate cancer detection among US men. Cancer Causes Control 2011, 22, 1483–1495. [Google Scholar] [CrossRef] [PubMed]
- Rowles, J.L., III; Ranard, K.M.; Smith, J.W.; An, R.; Erdman, J.W., Jr. Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: A systematic review and meta-analysis. Prostate Cancer Prost. Dis. 2017, 20, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Antwi, S.O.; Steck, S.E.; Su, L.J.; Hebert, J.R.; Zhang, H.; Craft, N.E.; Fontham, E.T.; Smith, G.J.; Bensen, J.T.; Mohler, J.L.; et al. Carotenoid intake and adipose tissue carotenoid levels in relation to prostate cancer aggressiveness among African-American and European-American men in the North Carolina-Louisiana prostate cancer project (PCaP). Prostate 2016, 76, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.E.; Soler-Vila, H.; Clark, P.E.; Kresty, L.A.; Allen, G.O.; Hu, J.J. Intake of plant foods and associated nutrients in prostate cancer risk. Nutr. Cancer 2009, 61, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, R.; Xiao, Y.; Fang, J.; Xu, Q. Effect of carotene and lycopene on the risk of prostate cancer: A systematic review and dose-response meta-analysis of observational studies. PLoS ONE 2015, 10, e0137427. [Google Scholar] [CrossRef]
- Van Dong, H.; Lee, A.H.; Nga, N.H.; Quang, N.; Le Chuyen, V.; Binns, C.W. Epidemiology and prevention of prostate cancer in Vietnam. Asian Pac. J. Cancer Prev. 2014, 15, 9747–9751. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, D.; Van Hoang, D.; Nguyen, C.T.; Lee, A.H. Validity and reliability of a food frequency questionnaire to assess habitual dietary intake in Northern Vietnam. Vietnam J. Public Health 2013, 1, 57–64. [Google Scholar]
- Agricultural Research Service. USDA-NCC Carotenoid Database for U.S. Foods—1998. Nutrient Data Laboratory. Available online: http://www.nal.usda.gov/fnic/foodcomp/Data/car98/car98.html (accessed on 10 November 2017).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. S4), 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Liang, W. Life-long physical activity involvement and the risk of ischemic stroke in southern china. Stroke Res. Treat. 2011, 2010, 415241. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation STEPwise Approach to Surveillance (STEPS). Available online: http://www.who.int/ncds/surveillance/steps/en/ (accessed on 16 January 2013).
- Hsieh, C.C.; Maisonneuve, P.; Boyle, P.; Macfarlane, G.J.; Roberston, C. Analysis of quantitative data by quantiles in epidemiologic studies: Classification according to cases, noncases, or all subjects? Epidemiology 1991, 2, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, P.A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod. Pathol. 2004, 17, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Smith-Warner, S.A.; Spiegelman, D.; Ritz, J.; Albanes, D.; Beeson, W.L.; Bernstein, L.; Berrino, F.; van den Brandt, P.A.; Buring, J.E.; Cho, E.; et al. Methods for pooling results of epidemiologic studies: The Pooling Project of Prospective Studies of Diet and Cancer. Am. J. Epidemiol. 2006, 163, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. The Combination of Estimates from Different Experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Gong, X.; Marisiddaiah, R.; Zaripheh, S.; Wiener, D.; Rubin, L.P. Mitochondrial beta-Carotene 9′,10′ Oxygenase Modulates Prostate Cancer Growth via NF-kappaB Inhibition: A Lycopene-Independent Function. Mol. Cancer Res. 2016, 14, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P.; Sestito, R.; Picci, N.; Lanza, P.; Monego, G.; Ranelletti, F.O. The sensitivity to β-carotene growth-inhibitory and proapoptotic effects is regulated by caveolin-1 expression in human colon and prostate cancer cells. Carcinogenesis 2008, 29, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-M.; Lu, Y.-L.; Chen, H.-Y.; Hu, M.-L. Lycopene and the LXRα agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARγ-LXRα-ABCA1 pathway. J. Nutr. Biochem. 2012, 23, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta 2005, 1740, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Gerster, H. Anticarcinogenic effect of common carotenoids. Int. J. Vitam. Nutr. Res. 1993, 63, 93–121. [Google Scholar] [PubMed]
- O’Neill, M.E.; Carroll, Y.; Corridan, B.; Olmedilla, B.; Granado, F.; Blanco, I.; Van den Berg, H.; Hininger, I.; Rousell, A.M.; Chopra, M.; et al. A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Br. J. Nutr. 2001, 85, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agriculture Research Service USDA Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 10 November 2017).
- Xu, X.; Li, J.; Wang, X.; Wang, S.; Meng, S.; Zhu, Y.; Liang, Z.; Zheng, X.; Xie, L. Tomato consumption and prostate cancer risk: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 37091. [Google Scholar] [CrossRef] [PubMed]
- Etminan, M.; Takkouche, B.; Caamano-Isorna, F. The role of tomato products and lycopene in the prevention of prostate cancer: A meta-analysis of observational studies. Cancer Epidemiol. Biomark. Prev. 2004, 13, 340–345. [Google Scholar]
- Lall, R.K.; Syed, D.N.; Adhami, V.M.; Khan, M.I.; Mukhtar, H. Dietary polyphenols in prevention and treatment of prostate cancer. Int. J. Mol. Sci. 2015, 16, 3350–3376. [Google Scholar] [CrossRef] [PubMed]
- Abushita, A.A.; Hebshi, E.A.; Daood, H.G.; Biacs, P.A. Determination of antioxidant vitamins in tomatoes. Food Chem. 1997, 60, 207–212. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- George, B.; Kaur, C.; Khurdiya, D.S.; Kapoor, H.C. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem. 2004, 84, 45–51. [Google Scholar] [CrossRef]
- Sahlin, E.; Savage, G.P.; Lister, C.E. Investigation of the antioxidant properties of tomatoes after processing. J. Food Compos. Anal. 2004, 17, 635–647. [Google Scholar] [CrossRef]
- Murphy, M.M.; Barraj, L.M.; Spungen, J.H.; Herman, D.R.; Randolph, R.K. Global assessment of select phytonutrient intakes by level of fruit and vegetable consumption. Br. J. Nutr. 2014, 112, 1004–1018. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cheng, Y.; Li, S.; Zhu, Y.; Xu, X.; Zheng, X.; Mao, Q.; Xie, L. Dietary carrot consumption and the risk of prostate cancer. Eur. J. Nutr. 2014, 53, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Jian, L.; Du, C.J.; Lee, A.H.; Binns, C.W. Do dietary lycopene and other carotenoids protect against prostate cancer? Int. J. Cancer 2005, 113, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Umesawa, M.; Iso, H.; Mikami, K.; Kubo, T.; Suzuki, K.; Watanabe, Y.; Mori, M.; Miki, T.; Tamakoshi, A.; Group, J.S. Relationship between vegetable and carotene intake and risk of prostate cancer: The JACC study. Br. J. Cancer 2014, 110, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Nishino, H.; Tokuda, H.; Murakoshi, M.; Satomi, Y.; Masuda, M.; Onozuka, M.; Yamaguchi, S.; Takayasu, J.; Tsuruta, J.; Okuda, M.; et al. Cancer prevention by natural carotenoids. Biofactors 2000, 13, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J. 2004, 3, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.Y.; Hung, J.C.; Heber, D.; Go, V.L.; Reuter, V.E.; Cordon-Cardo, C.; Scher, H.I.; Marshall, J.R.; Zhang, Z.F. Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiol. Biomark. Prev. 2001, 10, 749–756. [Google Scholar]
- Rohrmann, S.; Giovannucci, E.; Willett, W.C.; Platz, E.A. Fruit and vegetable consumption, intake of micronutrients, and benign prostatic hyperplasia in US men. Am. J. Clin. Nutr. 2007, 85, 523–529. [Google Scholar] [PubMed]
- Cohen, J.H.; Kristal, A.R.; Stanford, J.L. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 2000, 92, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; English, D.R.; McCredie, M.R.; Severi, G.; Boyle, P.; Hopper, J.L.; Giles, G.G. Foods, nutrients and prostate cancer. Cancer Causes Control. 2004, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Talamini, R.; Montella, M.; Negri, E.; Conti, E.; Franceschi, S.; La Vecchia, C. Retinol, carotenoids and the risk of prostate cancer: A case-control study from Italy. Int. J. Cancer 2004, 112, 689–692. [Google Scholar] [CrossRef] [PubMed]
- McCann, S.E.; Ambrosone, C.B.; Moysich, K.B.; Brasure, J.; Marshall, J.R.; Freudenheim, J.L.; Wilkinson, G.S.; Graham, S. Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York. Nutr. Cancer 2005, 53, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.G.; Hislop, G.T.; Howe, G.R.; Ghadirian, P. Plant foods, antioxidants, and prostate cancer risk: Findings from case-control studies in Canada. Nutr. Cancer 1999, 34, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.L.; Williams, R.; Rollo, M.; Wood, L.; Garg, M.L.; Jensen, M.; Collins, C.E. Plasma carotenoid levels as biomarkers of dietary carotenoid consumption: A systematic review of the validation studies. J. Nutr. Intermed. Metab. 2015, 2, 15–64. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer/World Health Organization. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Available online: http://globocan.iarc.fr/ (accessed on 5 November 2017).
Demographic Variable | Case (n = 244) | Control (n = 408) | p-Value † |
---|---|---|---|
Age (year), mean (SD) | 68.7 (7.3) | 68.0 (5.8) | 0.155 |
Age at marriage (year), mean (SD) | 25.0 (4.9) | 27.3 (4.9) | <0.001 |
Body mass index (kg/m2), mean (SD) | 22.0 (3.0) | 21.9 (3.3) | 0.913 |
Waist to hip ratio, mean (SD) | 0.9 (0.1) | 0.9 (0.1) | 0.128 |
Smoking habit (pack, years), mean (SD) | 16.2 (20.2) | 12.8 (14.7) | 0.025 |
Ethanol (g/day), mean (SD) | 22.6 (47.5) | 14.9 (28.4) | 0.021 |
Total energy (kcal/day), mean (SD) | 1712.0 (642.0) | 2101.0 (832.0) | <0.001 |
Number of children, n (%) | |||
≤3 | 103 (42.2) | 223 (54.7) | |
4–6 | 92 (37.7) | 148 (36.3) | <0.001 |
≥7 | 49 (20.1) | 37 (9.0) | |
Education level, n (%) | |||
Primary school | 65 (26.6) | 72 (17.6) | 0.019 |
High school | 134 (54.9) | 261 (64.0) | |
Tertiary education | 45 (18.4) | 75 (18.4) | |
Marital status, n (%) | |||
Married | 233 (95.5) | 375 (91.9) | 0.109 |
Never married or separated | 11 (4.5) | 33 (8.1) | |
Smoking history, n (%) | |||
Never | 58 (23.8) | 111 (27.2) | 0.182 |
Former | 121 (49.6) | 172 (42.2) | |
Current | 65 (26.6) | 125 (30.6) | |
Prostate cancer in the first-degree relatives (yes), n (%) | 7 (2.9) | 0 (0.0) | 0.002 |
Life-long physical activity, n (%) | |||
Never | 200 (82.0) | 192 (47.1) | <0.001 |
Past active | 25 (10.2) | 102 (25.0) | |
Regular | 19 (7.8) | 114 (27.9) |
Nutrient or Food | Case (n = 244) | Control (n = 408) | p-Value † |
---|---|---|---|
Lycopene (μg/day), mean (SD) | 839.6 (1087.2) | 1356.2 (1527.9) | <0.001 |
α-carotene (μg/day), mean (SD) | 756.5 (294.7) | 919.8 (411.3) | <0.001 |
β-carotene (μg/day), mean (SD) | 4473.4 (2555.0) | 5491.9 (3472.0) | <0.001 |
β-cryptoxanthin (μg/day), mean (SD) | 749.2 (420.9) | 839.6 (557.8) | 0.019 |
Lutein and zeaxanthin (μg/day), mean (SD) | 2147.7 (1325.7) | 2531.9 (1625.0) | 0.001 |
Tomato (g/day), mean (SD) | 10.9 (21.2) | 19.6 (28.5) | <0.001 |
Carrot (g/day), mean (SD) | 1.6 (2.7) | 3.6 (6.5) | <0.001 |
Pumpkin (g/day), mean (SD) | 15.1 (16.5) | 16.9 (18.4) | 0.193 |
Sweet potato (g/day), mean (SD) | 8.0 (17.1) | 11.5 (27.7) | 0.042 |
Watermelon (g/day), mean (SD) | 14.5 (19.5) | 19.5 (37.9) | 0.028 |
Citrus fruits (g/day), mean (SD) | 6.1 (17.2) | 9.2 (22.2) | 0.048 |
Nutrient or Food | Mean Intake (SD) | Case, n (%) | Control, n (%) | OR (95% CI) | Adjusted OR † (95% CI) | p for Linear Trend ‡ |
---|---|---|---|---|---|---|
Lycopene (μg/day) | ||||||
<648 | 388.9 (109.2) | 77 (31.6) | 136 (33.3) | 1.00 reference | 1.00 reference | |
648–1200 | 809.6 (184.1) | 124 (50.8) | 137 (33.6) | 1.60 (1.11, 2.32) | 0.83 (0.52, 1.34) | 0.003 |
>1200 | 2810.5 (1918.6) | 43 (17.6) | 135 (33.1) | 0.56 (0.36, 0.87) | 0.46 (0.27, 0.77) | |
α-carotene (μg/day) | ||||||
<743 | 547.7 (135.1) | 89 (36.5) | 136 (33.3) | 1.00 reference | 1.00 reference | |
743–976 | 861.7 (82.7) | 105 (43.0) | 136 (33.3) | 1.18 (0.82, 1.71) | 1.19 (0.78, 1.83) | 0.307 |
>976 | 1336.9 (367.7) | 50 (20.5) | 136 (33.3) | 0.56 (0.37, 0.85) | 0.77 (0.47, 1.26) | |
β-carotene (μg/day) | ||||||
<3920 | 2841.3 (601.1) | 74 (30.3) | 137 (33.6) | 1.00 reference | 1.00 reference | |
3920–5780 | 4672.6 (625.9) | 120 (49.2) | 135 (33.1) | 1.65 (1.13, 2.40) | 1.41 (0.91, 2.19) | 0.248 |
>5780 | 8904.4 (3828.9) | 50 (20.5) | 136 (33.3) | 0.68 (0.44, 1.04) | 0.73 (0.44, 1.22) | |
β-Cryptoxanthin (μg/day) | ||||||
<539 | 404.8 (102.9) | 62 (25.4) | 137 (33.6) | 1.00 reference | 1.00 reference | |
539–867 | 705.1 (93) | 100 (41.0) | 135 (33.1) | 1.64 (1.10, 2.44) | 1.63 (1.03, 2.60) | 0.303 |
>867 | 1388.5 (550.8) | 82 (33.6) | 136 (33.3) | 1.33 (0.89, 2.00) | 1.29 (0.79, 2.09) | |
Lutein and zeaxanthin (μg/day) | ||||||
<1670 | 1234.6 (293.3) | 69 (28.3) | 137 (33.6) | 1.00 reference | 1.00 reference | |
1670–2580 | 2081.7 (272.9) | 122 (50.0) | 135 (33.1) | 1.79 (1.23, 2.63) | 1.50 (0.97, 2.34) | 0.223 |
>2580 | 4269.3 (1708.0) | 53 (21.7) | 136 (33.3) | 0.77 (0.50, 1.19) | 0.73 (0.44, 1.20) | |
Tomato (g/day) | ||||||
<7.1 | 3.1 (2.1) | 87 (35.7) | 136 (33.3) | 1.00 reference | 1.00 reference | |
7.1–16.5 | 10.6 (3.4) | 114 (46.7) | 136 (33.3) | 1.31 (0.91, 1.89) | 0.68 (0.43, 1.06) | <0.001 |
>16.5 | 47.9 (39.6) | 43 (17.6) | 136 (33.3) | 0.49 (0.32, 0.76) | 0.39 (0.23, 0.66) | |
Carrot (g/day) | ||||||
<1 | 0.4 (0.3) | 111 (45.5) | 139 (34.1) | 1.00 reference | 1.00 reference | |
1–3.2 | 2 (0.7) | 94 (38.5) | 132 (32.4) | 0.89 (0.62, 1.28) | 0.61 (0.39, 0.94) | <0.001 |
>3.2 | 7.8 (8.7) | 39 (16.0) | 137 (33.6) | 0.36 (0.23, 0.55) | 0.35 (0.21, 0.58) | |
Pumpkin (g/day) | ||||||
<6.4 | 3.3 (2.1) | 69 (28.3) | 138 (33.8) | 1.00 reference | 1.00 reference | |
6.4–20.5 | 12 (3.6) | 101 (41.4) | 135 (33.1) | 1.50 (1.02, 2.21) | 1.01 (0.64, 1.59) | 0.423 |
>20.5 | 34.5 (19.3) | 74 (30.3) | 135 (33.1) | 1.10 (0.73, 1.64) | 0.82 (0.51, 1.32) | |
Sweet potato (g/day) | ||||||
<2.4 | 0.2 (0.3) | 51 (20.9) | 135 (33.1) | 1.00 reference | 1.00 reference | |
2.4–7.7 | 2.3 (0.9) | 76 (31.1) | 138 (33.8) | 1.46 (0.95, 2.24) | 0.84 (0.49, 1.44) | 0.291 |
>7.7 | 22.0 (33.6) | 117 (48.0) | 135 (33.1) | 2.29 (1.53, 3.46) | 1.32 (0.79, 2.24) | |
Watermelon (g/day) | ||||||
<4.5 | 0.7 (0.8) | 46 (18.9) | 136 (33.3) | 1.00 reference | 1.00 reference | |
4.5–17.6 | 10.7 (5.9) | 132 (54.1) | 137 (33.6) | 2.85 (1.90, 4.33) | 2.12 (1.31, 3.45) | 0.373 |
>17.6 | 59.9 (56.1) | 66 (27.0) | 135 (33.1) | 1.45 (0.93, 2.27) | 1.27 (0.76, 2.13) | |
Citrus fruits (g/day) | ||||||
<1.3 | 0.2 (0.3) | 51 (20.9) | 134 (32.8) | 1.00 reference | 1.00 reference | |
1.3–6 | 2.5 (1.3) | 133 (54.5) | 138 (33.8) | 2.53 (1.70, 3.80) | 1.74 (1.06, 2.89) | 0.713 |
>6 | 21.8 (32.4) | 60 (24.6) | 136 (33.3) | 1.16 (0.74, 1.81) | 0.91 (0.53, 1.55) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Hoang, D.; Pham, N.M.; Lee, A.H.; Tran, D.N.; Binns, C.W. Dietary Carotenoid Intakes and Prostate Cancer Risk: A Case-Control Study from Vietnam. Nutrients 2018, 10, 70. https://doi.org/10.3390/nu10010070
Van Hoang D, Pham NM, Lee AH, Tran DN, Binns CW. Dietary Carotenoid Intakes and Prostate Cancer Risk: A Case-Control Study from Vietnam. Nutrients. 2018; 10(1):70. https://doi.org/10.3390/nu10010070
Chicago/Turabian StyleVan Hoang, Dong, Ngoc Minh Pham, Andy H. Lee, Duong Nhu Tran, and Colin W. Binns. 2018. "Dietary Carotenoid Intakes and Prostate Cancer Risk: A Case-Control Study from Vietnam" Nutrients 10, no. 1: 70. https://doi.org/10.3390/nu10010070
APA StyleVan Hoang, D., Pham, N. M., Lee, A. H., Tran, D. N., & Binns, C. W. (2018). Dietary Carotenoid Intakes and Prostate Cancer Risk: A Case-Control Study from Vietnam. Nutrients, 10(1), 70. https://doi.org/10.3390/nu10010070