Higher Protein Intake Is Not Associated with Decreased Kidney Function in Pre-Diabetic Older Adults Following a One-Year Intervention—A Preview Sub-Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Outcome Measures
2.3. Diet
2.4. Blood Pressure
2.5. Body Composition
2.6. Physical Activity
2.7. Laboratory Analysis
2.8. Statistical Analysis
2.9. Research Ethics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Da, J.; Fernandes, R.; Ogurtsova, K.; Linnenkamp, U.; Guariguata, L.; Seuring, T.; Zhang, P.; Cavan, D.; Makaroff, L.E. IDF diabetes atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res. Clin. Pract. 2016, 117, 48–54. [Google Scholar]
- Global Report on Diabetes. Available online: http://www.who.int/about/licensing/ (accessed on 12 July 2016).
- The Diabetes Prevention Program (DDP) Research Group. The Diabetes Prevention Program (DDP): Description of lifestyle intervention. Diabetes Care 2002, 12, 2165–2171. [Google Scholar]
- Lindström, J.O.; Louheranta, A.; Mannelin, M.; Rastas, M.; Salminen, V.; Eriksson, J.; Uusitupa, M.; Tuomilehto, J. The Finnish Diabetes Prevention Study (DPS) lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003, 26, 3230–3236. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: The Da Qing IGT and diabetes study. Diabetes Care 1997, 20, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.J. Beneficial health effects of modest weight loss. Int. J. Obes. Relat. Metab. Disord. 1992, 16, 397–415. [Google Scholar] [PubMed]
- Skov, A.R.; Toubro, S.; Bülow, J.; Krabbe, K.; Parving, H.H.; Astrup, A. Changes in renal function during weight loss induced by high vs low-protein low-fat diets in overweight subjects. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Austin, G.L.; Ogden, L.G.; Hill, J.O. Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006. Am. J. Clin. Nutr. 2011, 93, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.M.; Dalskov, S.-M.; van Baak, M.; Jebb, S.A.; Papadaki, A.; Pfeiffer, A.F.H.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunešová, M.; Pihlsgård, M.; et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010, 363, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Skov, A.R.; Toubro, S.; Rønn, B.; Holm, L.; Astrup, A. Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Lejeune, M.P.G.M.; Nijs, I.; van Ooijen, M.; Kovacs, E.M.R. High protein intake sustains weight maintenance after body weight loss in humans. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Berryman, C.E.; Agarwal, S.; Lieberman, H.R.; Fulgoni, V.L.; Pasiakos, S.M. Diets higher in animal and plant protein are associated with lower adiposity and do not impair kidney function in US adults. Am. J. Clin. Nutr. 2016, 104, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Halbesma, N.; Bakker, S.J.L.; Jansen, D.F.; Stolk, R.P.; De Zeeuw, D.; De Jong, P.E.; Gansevoort, R.T. High protein intake associates with cardiovascular events but not with loss of renal function. J. Am. Soc. Nephrol. 2009, 20, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.L.; Stampfer, M.J.; Hankinson, S.E.; Spiegelman, D.; Curhan, G.C. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann. Intern. Med. 2003, 138, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; Appel, L.J.; Anderson, C.A.M.; Miller, E.R. Effect of a high-protein diet on kidney function in healthy adults: results from the omniheart trial. Am. J. Kidney. Dis. 2013, 61, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Frank, H.; Graf, J.; Amann-Gassner, U.; Bratke, R.; Daniel, H.; Heemann, U.; Hauner, H. Effect of short-term high-protein compared with normal-protein diets on renal hemodynamics and associated variables in healthy young men. Am. J. Clin. Nutr. 2009, 90, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Marckmann, P.; Osther, P.; Pedersen, A.N.; Jespersen, B. High-protein diets and renal health. J. Ren. Nutr. 2015, 25, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Leidy, H.J.; Clifton, P.M.; Astrup, A.; Wycherley, T.P.; Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.D.; Woods, S.C.; Mattes, R.D. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 2015, 101, 1320S–1329S. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; Levey, A.S. Dietary protein and renal function. J. Am. Soc. Nephrol. 1993, 3, 1723–1737. [Google Scholar] [PubMed]
- Brenner, B.M.; Meyer, T.W.; Hostetter, T.H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 1982, 307, 652–659. [Google Scholar] [PubMed]
- Fogelholm, M.; Larsen, T.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.; Boyadjieva, N.; Poppitt, S.; Schlicht, W.; Stratton, G.; Sundvall, J.; et al. Preview: Prevention of diabetes through lifestyle intervention and population studies in Europe and around the World. Design, methods, and baseline participant description of an adult cohort enrolled into a three-year randomised clinical trial. Nutrients 2017, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Souba, W.W.; Wilmore, D.W. Diet and nutrition in the care of the patient with surgery, trauma and sepsis. In Modern Nutrition in Health and Disease, 8th ed.; Shills, M.E., Olson, J.A., Shike, M., Ross, A.C., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, USA; Philadelphia, PA, USA, 1994; pp. 1207–1240. [Google Scholar]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; Mcdowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- R: A Language and Environment for Statistical Computing; Version 3.3.0; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org (accessed on 20 November 2016).
- Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Renal function following long-term weight loss in individuals with abdominal obesity on a very-low-carbohydrate diet vs high-carbohydrate diet. J. Am. Diet. Assoc. 2010, 110, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Bankir, L.; Bouby, N.; Trinh-Trang-Tan, M.-M.; Ahloulay, M.; Promeneur, D. Direct and indirect cost of urea excretion. Kidney Int. 1996, 49, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Boron, W.F.; Boulpaep, E. Medical Physiology, 3rd ed.; Elsevier: Philadelphia, PA, USA, 2016. [Google Scholar]
- Friedman, A.N.; Ogden, L.G.; Foster, G.D.; Klein, S.; Stein, R.; Miller, B.; Hill, J.O.; Brill, C.; Bailer, B.; Rosenbaum, D.R.; et al. Comparative effects of low-carbohydrate high-protein versus low-fat diets on the kidney. Clin. J. Am. Soc. Nephrol. 2012, 7, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Available online: http://www.nap.edu (accessed on 8 February 2017).
- Pedersen, A.N.; Kondrup, J.; Børsheim, E. Health effects of protein intake in healthy adults: A systematic literature review. Food Nutr. Res. 2013, 57, i0.21245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Treyzon, L.; Chen, S.; Yan, E.; Thames, G.; Carpenter, C.L. Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: An outpatient randomized controlled trial. Nutr. J. 2010, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Beck, G.; Caggiula, A.; Kusek, J. Comparison of high vs. normal/low protein diets on renal function in subjects without chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2014, 9, e97656. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Lifestyle Management. Diabetes Care 2017, 40, S33–S43. Available online: http://care.diabetesjournals.org/content/40/Supplement_1/S33 (accessed on 25 June 2017).
- Krebs, J.D.; Elley, C.R.; Parry-Strong, A.; Lunt, H.; Drury, P.L.; Bell, D.A.; Robinson, E.; Moyes, S.A.; Mann, J.I. The Diabetes Excess Weight Loss (DEWL) trial: A randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 2012, 55, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Thompson, C.H.; Luscombe-Marsh, N.D.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Brinkworth, G.D. Long-term effects of a very low carbohydrate compared with a high carbohydrate diet on renal function in individuals with type 2 diabetes. Medicine (Baltimore) 2015, 94, e2181. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.N.; Mann, N.J.; Maclean, E.; Shaw, J.E. The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 month randomised controlled trial. Diabetologia 2011, 54, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Jesudason, D.R.; Pedersen, E.; Clifton, P.M. Weight-loss diets in people with type 2 diabetes and renal disease: A randomized controlled trial of the effect of different dietary protein amounts. Am. J. Clin. Nutr. 2013, 98, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Gannon, M.C. The metabolic response to a high-protein, low-carbohydrate diet in men with type 2 diabetes mellitus. Metabolism 2006, 55, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, L.C.; Crews, D.C.; Coresh, J.; Miller, E.R.; Saran, R.; Yee, J.; Hedgeman, E.; Pavkov, M.; Eberhardt, M.S.; Williams, D.E.; et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin. J. Am. Soc. Nephrol. 2010, 5, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A. Urine nitrogen as a biomarker for the validation of dietary protein intake. J. Nutr. 2003, 133, 921S–924S. [Google Scholar] [PubMed]
- Jesudason, D.R.; Clifton, P. Interpreting different measures of glomerular filtration rate in obesity and weight loss: Pitfalls for the clinician. Int. J. Obes. 2012, 36, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
Variables | Baseline | 1 Year | p-Value |
---|---|---|---|
Age (years) | 61.4 ± 4.5 | - | - |
Males % (No.) | 57.9 (179) | - | - |
Weight (kg) | 94.6 ± 16.9 | 85.4 ± 15.9 | <0.001 |
Energy intake (kJ/day) a | 8616 ± 2169 | 7154 ± 1994 | <0.0001 |
Protein intake (g/day) a | 90.6 ± 22.9 | 85.3 ± 27.9 | 0.005 |
Protein intake (g/kg body weight/day) a | 0.98 ± 0.3 | 1.03 ± 0.4 | 0.04 |
Protein intake (E%) | 18.3 ± 3.4 | 20.7 ± 4.3 | <0.0001 |
Calculated protein intake (g/day (urea excretion) | 105.8 ± 35.7 | 109.6 ± 40.0 | 0.114 |
Calculated protein intake (g/kg body weight/day (urea excretion) | 1.1 ± 0.4 | 1.3 ± 0.5 | <0.0001 |
FPG mmol/L b | 6.2 ± 0.58 | 6.0 ± 0.54 | <0.0001 |
2h-glucose mmol/L c | 8.2 ± 2.25 | 6.8 ± 1.76 | <0.0001 |
Body-mass index (kg/m2) | 33.2 ± 4.6 | 30.0 ± 4.5 | <0.001 |
Fat Free Mass (kg) d | 54.6 ± 11.5 | 53.8 ± 11.1 | <0.001 |
Fat Mass (kg) d | 38.8 ± 11.4 | 31.8 ± 11.7 | <0.001 |
Moderate and vigorous physical activity (CPM) e | 23.8 (38.2, 12.3) | 28.1 (46.8, 15.5) | <0.001 |
Systolic blood pressure (mmHg) | 134.1 ± 15.8 | 129.8 ± 14.9 | <0.001 |
Diastolic blood pressure (mmHg) | 78.2 ± 11.7 | 75.9 ± 10.3 | <0.001 |
Renal characteristics | |||
Total urine volume (mL) f | 1972 ± 737.8 | 2233 ± 804.2 | <0.001 |
U-Urea excretion (mmol/day) | 424.1 ± 162.4 | 441.4 ± 183.6 | 0.114 |
Creatinine clearance (mL/min) | 114.1 ± 38.4 | 108.7 ± 49.9 | 0.034 |
eGFR (mL/min/1.73 m2) | 76.3 ± 13.5 | 77.1 ± 13.3 | 0.258 |
U-Creatinine excretion (mmol/day) | 13.2 ± 5.3 | 12.3 ± 5.7 | 0.009 |
Urea/Creatinine Ratio (UCR) | 0.69 ± 1.43 | 0.74 ± 1.43 | <0.0001 |
S-Creatinine (µmol/L) | 82.8 ± 16.5 | 81.7 ± 15.6 | 0.09 |
S-Urea (mmol/L) | 5.6 ± 1.4 | 5.9 ± 1.4 | <0.001 |
U-Albumin (mg/day) g | 12.5 (21.4, 8.4) | 9.5 (18.1, 7.7) | 0.469 |
Albumin/Creatinine Ratio (ACR) | 0.8 (1.1, 0.5) | 0.9 (1.3, 0.7) | 0.339 |
Δ Estimated Protein Intake (g/kg/Day) Calculated from the Urea Excretion | ||||||
---|---|---|---|---|---|---|
Variable | n | Unadjusted (β ± SE) | p-Value | n | Adjusted (β ± SE) | p-Value |
Δ Creatinine clearance (mL/min) | 294 | 75.86 ± 4.31 | <0.0001 | 219 | 72.86 ± 4.94 | <0.0001 |
Δ eGFR (mL/min/1.73 m2) | 309 | 2.06 ± 1.32 | 0.118 | 230 | 3.42 ± 1.56 | 0.03 |
Δ U-Albumin/U-Creatinine ratio (ACR) | 309 | −1.12 ± 4.47 | 0.09 | 230 | 0.53 ± 5.24 | 0.920 |
Δ Urea/Creatinine Ratio (UCR) | 309 | 9.64 ± 2.22 | <0.0001 | 230 | 13.53 ± 2.60 | <0.0001 |
Δ S-Creatinine (µmol/L) | 309 | −2.14 ± 1.31 | 0.104 | 230 | −3.59 ± 1.55 | 0.02 |
Δ S-Urea (mmol/L) | 309 | 0.62 ± 0.16 | <0.001 | 230 | 0.84 ± 0.19 | <0.0001 |
Slope of Δ Protein Intake (g/kg/Day) | ||||
---|---|---|---|---|
Low (n = 103) | Moderate (n = 103) | High (n = 103) | p-Value | |
Δ Creatinine clearance (mL/min)/g protein /kg/day | 59.45 ± 10.23 | 62.64 ± 8.19 | 87.59 ± 5.91 | 0.056 |
ΔeGFR (mL/min/1.73 m2/g protein/kg/day) | 2.56 ± 2.48 | 5.09 ± 2.64 | −0.12 ± 1.99 | 0.626 |
Δ Albumin/Creatinine ratio (ACR) | −5.74 ± 8.40 | 0.13 ± 8.94 | −1.37 ± 6.75 | 0.434 |
Δ Urea/Creatinine Ratio (UCR) | 1.80 ± 4.12 | 20.16 ± 4.38 | 7.45 ± 3.31 | 0.02 |
ΔS-Creatinine (µmol/L/g protein/kg/day) | −2.46 ± 2.48 | −4.45 ± 2.63 | −0.38 ± 1.99 | 0.773 |
ΔS-Urea (mmol/L/g protein/kg/day) | −0.02 ± 0.29 | 1.41 ± 0.31 | 0.48 ± 0.24 | 0.006 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Møller, G.; Rikardt Andersen, J.; Ritz, C.; P. Silvestre, M.; Navas-Carretero, S.; Jalo, E.; Christensen, P.; Simpson, E.; Taylor, M.; Martinez, J.A.; et al. Higher Protein Intake Is Not Associated with Decreased Kidney Function in Pre-Diabetic Older Adults Following a One-Year Intervention—A Preview Sub-Study. Nutrients 2018, 10, 54. https://doi.org/10.3390/nu10010054
Møller G, Rikardt Andersen J, Ritz C, P. Silvestre M, Navas-Carretero S, Jalo E, Christensen P, Simpson E, Taylor M, Martinez JA, et al. Higher Protein Intake Is Not Associated with Decreased Kidney Function in Pre-Diabetic Older Adults Following a One-Year Intervention—A Preview Sub-Study. Nutrients. 2018; 10(1):54. https://doi.org/10.3390/nu10010054
Chicago/Turabian StyleMøller, Grith, Jens Rikardt Andersen, Christian Ritz, Marta P. Silvestre, Santiago Navas-Carretero, Elli Jalo, Pia Christensen, Elizabeth Simpson, Moira Taylor, J. Alfredo Martinez, and et al. 2018. "Higher Protein Intake Is Not Associated with Decreased Kidney Function in Pre-Diabetic Older Adults Following a One-Year Intervention—A Preview Sub-Study" Nutrients 10, no. 1: 54. https://doi.org/10.3390/nu10010054