Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smith, U. Abdominal obesity: A marker of ectopic fat accumulation. J. Clin. Investig. 2015, 125, 1790–1792. [Google Scholar] [CrossRef] [PubMed]
- Rosique-Esteban, N.; Diaz-Lopez, A.; Martinez-Gonzalez, M.A.; Corella, D.; Goday, A.; Martinez, J.A.; Romaguera, D.; Vioque, J.; Aros, F.; Garcia-Rios, A.; et al. Leisure-time physical activity, sedentary behaviors, sleep, and cardiometabolic risk factors at baseline in the predimed-plus intervention trial: A cross-sectional analysis. PLoS ONE 2017, 12, e0172253. [Google Scholar] [CrossRef] [PubMed]
- Thorp, A.A.; McNaughton, S.A.; Owen, N.; Dunstan, D.W. Independent and joint associations of tv viewing time and snack food consumption with the metabolic syndrome and its components; a cross-sectional study in australian adults. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.J.; Brown, W.V.; Gonzalez-Campoy, J.M.; Jones, S.R.; Kumar, R.; La Forge, R.; et al. Obesity, adiposity, and dyslipidemia: A consensus statement from the national lipid association. J. Clin. Lipidol. 2013, 7, 304–383. [Google Scholar] [CrossRef] [PubMed]
- Bays, H. Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Sears, B.; Perry, M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Adipose tissue and metabolic syndrome: Too much, too little or neither. Eur. J. Clin. Investig. 2015, 45, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Cooke, A.A.; Connaughton, R.M.; Lyons, C.L.; McMorrow, A.M.; Roche, H.M. Fatty acids and chronic low grade inflammation associated with obesity and the metabolic syndrome. Eur. J. Pharmacol. 2016, 785, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Warensjö, E.; Rosell, M.; Hellenius, M.L.; Vessby, B.; De Faire, U.; Risérus, U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: Links to obesity and insulin resistance. Lipids Health Dis. 2009, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Stumvoll, M.; Bogardus, C.; Tataranni, P.A. Elevated plasma nonesterified fatty acids are associated with deterioration of acute insulin response in igt but not ngt. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E1156–E1161. [Google Scholar] [CrossRef] [PubMed]
- Paillard, F.; Catheline, D.; Duff, F.L.; Bouriel, M.; Deugnier, Y.; Pouchard, M.; Daubert, J.C.; Legrand, P. Plasma palmitoleic acid, a product of stearoyl-coa desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Juonala, M.; Viikari, J.S.; Raitakari, O.T. Main findings from the prospective cardiovascular risk in young finns study. Curr. Opin. Lipidol. 2013, 24, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Juonala, M.; Magnussen, C.G.; Berenson, G.S.; Venn, A.; Burns, T.L.; Sabin, M.A.; Srinivasan, S.R.; Daniels, S.R.; Davis, P.H.; Chen, W.; et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 2011, 365, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Corral, C.M.; Alderete, T.L.; Richey, J.; Sequeira, P.; Goran, M.I.; Weigensberg, M.J. Fasting, post-ogtt challenge, and nocturnal free fatty acids in prediabetic versus normal glucose tolerant overweight and obese latino adolescents. Acta Diabetol. 2015, 52, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.; Collins, C.E.; Garg, M.L. Omega-3 index, obesity and insulin resistance in children. Int. J. Pediatr. Obes. 2011, 6, e532–e539. [Google Scholar] [CrossRef] [PubMed]
- Sabin, M.A.; De Hora, M.; Holly, J.M.; Hunt, L.P.; Ford, A.L.; Williams, S.R.; Baker, J.S.; Retallick, C.J.; Crowne, E.C.; Shield, J.P. Fasting nonesterified fatty acid profiles in childhood and their relationship with adiposity, insulin sensitivity, and lipid levels. Pediatrics 2007, 120, e1426–e1433. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Kiess, W.; Andler, W. Insulin sensitivity indices of glucose and free fatty acid metabolism in obese children and adolescents in relation to serum lipids. Metabolism 2005, 54, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Chu, N.F.; Chang, J.B.; Shieh, S.M. Plasma leptin, fatty acids, and tumor necrosis factor-receptor and insulin resistance in children. Obes. Res. 2003, 11, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Cardona, J.; Velásquez-Rodríguez, C. Profile of free fatty acids and fractions of phospholipids, cholesterol esters and triglycerides in serum of obese youth with and without metabolic syndrome. Nutrients 2016, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Gil-Campos, M.; del Carmen Ramírez-Tortosa, M.; Larqué, E.; Linde, J.; Aguilera, C.M.; Cañete, R.; Gil, A. Metabolic syndrome affects fatty acid composition of plasma lipids in obese prepubertal children. Lipids 2008, 43, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Wang, J.; Maynard, L.M.; Thornton, J.C.; Mei, Z.; Pierson, R.N.; Dietz, W.H.; Horlick, M. Relation of bmi to fat and fat-free mass among children and adolescents. Int. J. Obes. (Lond.) 2005, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maynard, L.M.; Wisemandle, W.; Roche, A.F.; Chumlea, W.C.; Guo, S.S.; Siervogel, R.M. Childhood body composition in relation to body mass index. Pediatrics 2001, 107, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P.; Kovacs, E.; Moreno, L.A.; Veidebaum, T.; Tornaritis, M.; Kourides, Y.; Siani, A.; Lauria, F.; Sioen, I.; Claessens, M.; et al. Percentile reference values for anthropometric body composition indices in european children from the idefics study. Int. J. Obes. (Lond.) 2014, 38 (Suppl. S2), S15–S25. [Google Scholar] [CrossRef] [PubMed]
- Garcés, C.; Cano, B.; Granizo, J.J.; Benavente, M.; Viturro, E.; Gutiérrez-Guisado, J.; de Oya, I.; Lasunción, M.A.; de Oya, M. Insulin and homa in spanish prepubertal children: Relationship with lipid profile. Clin. Biochem. 2005, 38, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Salgin, B.; Ong, K.K.; Thankamony, A.; Emmett, P.; Wareham, N.J.; Dunger, D.B. Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in children and adults and a higher incidence of type 2 diabetes. J. Clin. Endocrinol. Metab. 2012, 97, 3302–3309. [Google Scholar] [CrossRef] [PubMed]
- Hershkop, K.; Besor, O.; Santoro, N.; Pierpont, B.; Caprio, S.; Weiss, R. Adipose insulin resistance in obese adolescents across the spectrum of glucose tolerance. J. Clin. Endocrinol. Metab. 2016, 101, 2423–2431. [Google Scholar] [CrossRef] [PubMed]
- Pagadala, M.; Kasumov, T.; McCullough, A.J.; Zein, N.N.; Kirwan, J.P. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol. Metab. 2012, 23, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, A.; Sugawara, S.; Okita, M.; Akahane, T.; Fukui, K.; Hashiuchi, M.; Kataoka, C.; Tsukamoto, I. Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in japanese men with abdominal obesity or metabolic syndrome. J. Nutr. Sci. Vitaminol. (Tokyo) 2009, 55, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Warensjö, E.; Risérus, U.; Vessby, B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 2005, 48, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.E.; Egeland, G.M.; Meltzer, S.J.; Kubow, S. The association of desaturase 9 and plasma fatty acid composition with insulin resistance-associated factors in female adolescents. Metabolism 2009, 58, 158–166. [Google Scholar] [CrossRef] [PubMed]
- De Henauw, S.; Michels, N.; Vyncke, K.; Hebestreit, A.; Russo, P.; Intemann, T.; Peplies, J.; Fraterman, A.; Eiben, G.; de Lorgeril, M.; et al. Blood lipids among young children in europe: Results from the european idefics study. Int. J. Obes. (Lond.) 2014, 38 (Suppl. S2), S67–S75. [Google Scholar] [CrossRef] [PubMed]
- Peplies, J.; Jiménez-Pavón, D.; Savva, S.C.; Buck, C.; Günther, K.; Fraterman, A.; Russo, P.; Iacoviello, L.; Veidebaum, T.; Tornaritis, M.; et al. Percentiles of fasting serum insulin, glucose, hba1c and homa-ir in pre-pubertal normal weight european children from the idefics cohort. Int. J. Obes. (Lond.) 2014, 38 (Suppl. S2), S39–S47. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.S.; Sharp, S.J.; Jansen, E.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: A pilot study in the european prospective investigation into cancer and nutrition (epic)-norfolk cohort. Am. J. Clin. Nutr. 2010, 92, 1214–1222. [Google Scholar] [PubMed]
- Bingham, S.A.; Gill, C.; Welch, A.; Cassidy, A.; Runswick, S.A.; Oakes, S.; Lubin, R.; Thurnham, D.I.; Key, T.J.; Roe, L.; et al. Validation of dietary assessment methods in the uk arm of epic using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin c and carotenoids as biomarkers. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S137–S151. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.; Roche, A.; Martorell, R. Antropometric Standardization Reference Manual; Human Kinetics Publishers: Champaign, IL, USA, 1988; pp. 2–80. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar] [PubMed]
- Wallace, T.M.; Matthews, D.R. The assessment of insulin resistance in man. Diabet. Med. 2002, 19, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
- Bjermo, H.; Risérus, U. Role of hepatic desaturases in obesity-related metabolic disorders. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Lönnroth, P.; Digirolamo, M.; Krotkiewski, M.; Smith, U. Insulin binding and responsiveness in fat cells from patients with reduced glucose tolerance and type ii diabetes. Diabetes 1983, 32, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Arner, P.; Bolinder, J.; Engfeldt, P.; Hellmér, J.; Ostman, J. Influence of obesity on the antilipolytic effect of insulin in isolated human fat cells obtained before and after glucose ingestion. J. Clin. Investig. 1984, 73, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, G.; Tataranni, P.A.; Foley, J.E.; Bogardus, C.; Howard, B.V.; Ravussin, E. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of niddm. Diabetologia 1995, 38, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Frigolet, M.E.; Gutierrez-Aguilar, R. The role of the novel lipokine palmitoleic acid in health and disease. Adv. Nutr. 2017, 8, 173s–181s. [Google Scholar] [CrossRef] [PubMed]
- Hodson, L.; Karpe, F. Is there something special about palmitoleate? Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Campos, H.; McGarvey, S.; Wu, Z.; Goldberg, R.; Baylin, A. Adipose tissue palmitoleic acid and obesity in humans: Does it behave as a lipokine? Am. J. Clin. Nutr. 2011, 93, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Scagliusi, F.B.; Ferriolli, E.; Pfrimer, K.; Laureano, C.; Cunha, C.S.; Gualano, B.; Lourenco, B.H.; Lancha, A.H., Jr. Underreporting of energy intake in brazilian women varies according to dietary assessment: A cross-sectional study using doubly labeled water. J. Am. Diet. Assoc. 2008, 108, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr. 2010, 92, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Warensjö, E.; Ohrvall, M.; Vessby, B. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Furuhashi, N.; Kuromori, Y.; Miyashita, M.; Iwata, F.; Harada, K. Plasma palmitoleic acid content and obesity in children. Am. J. Clin. Nutr. 2005, 82, 747–750. [Google Scholar] [PubMed]
- Wang, X.; Lin, H.; Gu, Y. Multiple roles of dihomo-gamma-linolenic acid against proliferation diseases. Lipids Health Dis. 2012, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Aschner, P.; Buendía, R.; Brajkovich, I.; Gonzalez, A.; Figueredo, R.; Juarez, X.E.; Uriza, F.; Gomez, A.M.; Ponte, C.I. Determination of the cutoff point for waist circumference that establishes the presence of abdominal obesity in latin american men and women. Diabetes Res. Clin. Pract. 2011, 93, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Haffner, S.M.; Miettinen, H.; Stern, M.P. The homeostasis model in the san antonio heart study. Diabetes Care 1997, 20, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Hanley, A.J.; Williams, K.; Stern, M.P.; Haffner, S.M. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: The san antonio heart study. Diabetes Care 2002, 25, 1177–1184. [Google Scholar] [CrossRef] [PubMed]

| Children without Abdominal Obesity (n = 29) | Children with Abdominal Obesity (n = 29) | p-Value | |
|---|---|---|---|
| Age (years) | 7.1 ± 2.6 | 7.2 ± 2.7 | 0.876 |
| Energy intake (kcal/day) | 2453 ± 946 | 2358 ± 781 | 0.704 |
| Carbohydrate intake (g/day) | 307.8 ± 134.6 | 278.6 ± 92.4 | 0.374 |
| Protein intake (g/day) | 84.9 ± 30.7 | 92.4 ± 42.3 | 0.478 |
| Saturated fat intake (g/day) | 37.8 ± 15.1 | 37.5 ± 12.8 | 0.942 |
| Monounsaturated fat intake (g/day) | 40.1 ± 17.8 | 40.2 ± 14.5 | 0.975 |
| Polyunsaturated fat intake (g/day) | 15.5 ± 8.4 | 14.1 ± 5.6 | 0.488 |
| Body height (cm) | 118.8 ± 16.8 | 122.4 ± 16.7 | 0.424 |
| Body weight (kg) | 22.1 ± 6.0 | 30.9 ± 10.7 | 0.000 * |
| Body mass index (kg/m2) | 15.4 (1.5) | 19.7 (3.5) | 0.000 † |
| Body mass index for age (z-score) | −0.2 ± 0.7 | 1.9 ± 0.8 | 0.000* |
| Waist circumference (cm) | 53.7 (5.8) | 64.9 (16.5) | 0.000 † |
| Skinfolds Sum (mm) | 26.5 (9.8) | 60.5 (36.8) | 0.000 † |
| Fat Percentage (%) | 16.4 ± 5.5 | 26.1 ± 6.9 | 0.000 * |
| Systolic blood pressure (mmHg) | 93.5 ± 6.4 | 98.6 ± 6.4 | 0.004 * |
| Diastolic blood pressure (mmHg) | 58.5 ± 5.3 | 61.1 ± 6.5 | 0.096 |
| Fasting blood glucose (mmol/L) | 4.9 ± 0.3 | 4.8 ± 0.3 | 0.523 |
| Fasting blood insulin (pmol/L) | 42.4 (24.3) | 70.2 (54.7) | 0.032 † |
| HOMA-IR | 1.3 (0.7) | 2.2 (1.8) | 0.051 |
| Triglycerides (mmol/L) | 0.77 (0.53) | 0.87 (0.45) | 0.363 |
| Total cholesterol (mmol/L) | 4.12 (1.26) | 3.97 (1.15) | 0.363 |
| HDL-C (mmol/L) | 1.4 ± 0.3 | 1.3 ± 0.3 | 0.051 |
| LDL-C (mmol/L) | 2.3 ± 0.7 | 2.5 ± 0.7 | 0.246 |
| Total FFAs (mmol/L) | 1.02 (0.61) | 0.89 (0.37) | 0.258 |
| Hs-CRP (nmol/L) | 11.0 (7.8) | 16.6 (14.2) | 0.016 † |
| Children without Abdominal Obesity | Children with Abdominal Obesity | p-Value | |
|---|---|---|---|
| Saturated fatty acids | 42.77 ± 3.69 | 43.44 ± 3.63 | 0.485 |
| Myristic (14:0) ‡ | 0.65 ± 0.23 | 0.67 ± 0.20 | 0.865 |
| Palmitic (16:0) | 26.32 ± 3.06 | 27.09 ± 3.39 | 0.365 |
| Estearic (18:0) | 16.02 ± 1.24 | 15.96 ± 1.24 | 0.858 |
| Monounsaturated fatty acids | 25.88 ± 11.30 | 25.26 ± 8.95 | 0.819 |
| Palmitoleic (16:1 n-7) ‡ | 0.70 ± 0.29 | 0.94 ± 0.35 | 0.038 * |
| Oleic (18:1 n-9) | 25.47 ± 11.33 | 24.71 ± 8.90 | 0.778 |
| Polyunsaturated fatty acids | 31.34 ± 8.00 | 31.28 ± 5.94 | 0.974 |
| Linoleic (18:2 n-6) | 19.72 ± 4.04 | 19.23 ± 3.97 | 0.603 |
| DHGL (20:3 n-6) | 2.07 ± 0.98 | 2.76 ± 1.09 | 0.015 * |
| Arachidonic (20:4 n-6) | 6.75 ± 2.05 | 6.96 ± 2.35 | 0.729 |
| DHA (22:6 n-3) | 2.79 ± 1.80 | 2.34 ± 0.83 | 0.221 |
| Fatty acids ratios | |||
| 16:1 n-7/16:0 (D9) ‡ | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.010 * |
| 20:3 n-6/18:2 n-6 (D6) | 0.10 ± 0.04 | 0.14 ± 0.06 | 0.002 * |
| 20:4 n-6/20:3 n-6 (D5) | 3.47 (1.69) | 2.53 (0.63) | 0.002 † |
| Omega-6/Omega-3 | 12.76 ± 4.55 | 13.64 ± 3.65 | 0.406 |
| Anthropometric and Cardiometabolic | Palmitic (16:0) | Palmitoleic (16:1 n-7) | DHGL (20:3 n-6) | 16:1 n-7/16:0 (D9) | 20:3 n-6/18:2 n-6 (D6) | 20:4 n-6/20:3 n-6 (D5) |
|---|---|---|---|---|---|---|
| Body mass index | 0.145 | 0.397 * | 0.296 * | 0.451 * | 0.342 * | −0.299 * |
| Waist circumference | 0.160 | 0.380 * | 0.276 * | 0.414 * | 0.332 * | −0.302 * |
| Fat mass percentage | 0.146 | 0.338 | 0.232 | 0.403 * | 0.289 * | −0.242 |
| Systolic blood pressure | 0.265 * | 0.386 * | 0.330 * | 0.368 * | 0.284 * | −0.314 * |
| Insulin | −0.014 | 0.272 | 0.132 | 0.306 | 0.142 | −0.281 * |
| HDL-C | −0.164 | −0.572 ** | −0.198 | −0.540 ** | −0.250 | 0.242 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aristizabal, J.C.; González-Zapata, L.I.; Estrada-Restrepo, A.; Monsalve-Alvarez, J.; Restrepo-Mesa, S.L.; Gaitán, D. Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity. Nutrients 2018, 10, 31. https://doi.org/10.3390/nu10010031
Aristizabal JC, González-Zapata LI, Estrada-Restrepo A, Monsalve-Alvarez J, Restrepo-Mesa SL, Gaitán D. Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity. Nutrients. 2018; 10(1):31. https://doi.org/10.3390/nu10010031
Chicago/Turabian StyleAristizabal, Juan C., Laura I. González-Zapata, Alejandro Estrada-Restrepo, Julia Monsalve-Alvarez, Sandra L. Restrepo-Mesa, and Diego Gaitán. 2018. "Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity" Nutrients 10, no. 1: 31. https://doi.org/10.3390/nu10010031
APA StyleAristizabal, J. C., González-Zapata, L. I., Estrada-Restrepo, A., Monsalve-Alvarez, J., Restrepo-Mesa, S. L., & Gaitán, D. (2018). Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity. Nutrients, 10(1), 31. https://doi.org/10.3390/nu10010031

