Vitamin D Vitamers Affect Vitamin D Status Differently in Young Healthy Males
Abstract
1. Introduction
2. Materials and Methods
2.1. Randomized Controlled Trial
2.1.1. Rationale and Design of Study
2.1.2. Tablets for RCT
2.1.3. Conduct of the Study
2.2. Laboratory Analysis
2.2.1. Vitamin D in Tablets
2.2.2. Serum Vitamin D Metabolites
2.2.3. Serum Intact Parathyroid Hormone
2.2.4. Serum Total Calcium
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Subjects
3.2. Effects of Intervention with Different Vitamin D Vitamers
3.3. Relative Effectiveness of Vitamin D Vitamers to Increase Vitamin D Status
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- DTU Fødevareinstituttet. Welcome to Fooddata. Available online: http://fooddata.dk/ (accessed on 15 December 2017).
- Duffy, S.; Rajauriaa, G.; Clarke, L.C.; Hayes, A.; O’Grady, M.N.; Kerry, J.P.; Jakobsen, J.; Cashman, K.D.; Kelly, A.K.; O’Doherty, J. Vitamin D-biofortified beef: A comparison of cholecalciferol with synthetic versus UVB-mushroom derived ergosterol as feed source. Food Chem. 2017. under review. [Google Scholar]
- Jakobsen, J.; Saxholt, E. Vitamin D metabolites in bovine milk and butter. J. Food Compos. Anal. 2009, 22, 472–478. [Google Scholar] [CrossRef]
- Bouillon, R. Free or Total 25OHD as Marker for Vitamin D Status? J. Bone Miner. Res. 2016, 31, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. Extrarenal Vitamin D Activation and Interactions Between Vitamin D2, Vitamin D3, and Vitamin D Analogs. Annu. Rev. Nutr. 2013, 33, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; Lanham, S. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, L.; Brot, C.; Jakobsen, J. Food contents and biological activity of 25-hydroxyvitamin D: A vitamin D metabolite to be reckoned with? Ann. Nutr. Metab. 2003, 47, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Seamans, K.M.; Lucey, A.J.; Stöcklin, E.; Weber, P.; Kiely, M.; Hill, T.R. Relative effectiveness of oral 25-hydroxyvitamin D3 and vitamin D3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am. J. Clin. Nutr. 2012, 95, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Jetter, A.; Egli, A.; Dawson-Hughes, B.; Staehelin, H.B.; Stoecklin, E.; Goessl, R.; Henschkowski, J.; Bischoff-Ferrari, H.A. Pharmacokinetics of oral vitamin D3 and calcifediol. Bone 2014, 59, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Gemar, D.; Engelke, J.; Gangnon, R.; Ramamurthy, R.; Krueger, D.; Drezner, M.K. Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU daily or 50,000 IU monthly in older adults. J. Clin. Endocrinol. Metab. 2011, 96, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Recker, R.R.; Grote, J.; Horst, R.L.; Armas, L.A.G. Vitamin D3 Is More Potent Than Vitamin D2 in Humans. J. Clin. Endocrinol. Metab. 2011, 96, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, E.; Mascia, M.L.; Cipriani, C.; Fassino, V.; Mazzei, F.; D’Erasmo, E.; Carnevale, V.; Scillitani, A.; Minisola, S. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J. Clin. Endocrinol. Metab. 2008, 93, 3015–3020. [Google Scholar] [CrossRef] [PubMed]
- Biancuzzo, R.M.; Young, A.; Bibuld, D.; Cai, M.H.; Winter, M.R.; Klein, E.K.; Ameri, A.; Reitz, R.; Salameh, W.; Chen, T.C.; et al. Fortification of orange juice with vitamin D2 or vitamin D3 is as effective as an oral supplement in maintaining vitamin D status in adults 1–4. Am. J. Clin. Nutr. 2010, 91, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Glendenning, P.; Chew, G.T.; Seymour, H.M.; Gillett, M.J.; Goldswain, P.R.; Inderjeeth, C.A.; Vasikaran, S.D.; Taranto, M.; Musk, A.A.; Fraser, W.D. Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone 2009, 45, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Biancuzzo, R.M.; Chen, T.C.; Klein, E.K.; Young, A.; Bibuld, D.; Reitz, R.; Salameh, W.; Ameri, A.; Tannenbaum, A.D. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J. Clin. Endocrinol. Metab. 2008, 93, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Trang, H.M.; Cole, D.E.C.; Rubin, L.A.; Pierratos, A.; Siu, S.; Vieth, R. Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am. J. Clin. Nutr. 1998, 68, 854–858. [Google Scholar] [PubMed]
- Jones, K.S.; Assar, S.; Harnpnaich, D.; Bouillon, R.; Lambrechts, D.; Prentice, A.; Schoenmakers, I. 25(OH)D2 half-life is shorter than 25(OH)D3 half-Life and is influenced by DBP concentration and genotype. J. Clin. Endocrinol. Metab. 2014, 99, 3373–3381. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.; Maribo, H.; Bysted, A.; Sommer, H.M.; Hels, O. 25-hydroxyvitamin D3 affects vitamin D status similar to vitamin D3 in pigs—But the meat produced has a lower content of vitamin D. Br. J. Nutr. 2007, 98, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Witschi, A.K.M.; Liesegang, A.; Gebert, S.; Weber, G.M.; Wenk, C. Effect of source and quantity of dietary vitamin D in maternal and creep diets on bone metabolism and growth in piglets. J. Anim. Sci. 2011, 89, 1844–1852. [Google Scholar] [CrossRef] [PubMed]
- Höller, U.; Quintana, A.P.; Gössl, R.; Olszewski, K.; Riss, G.; Schattner, A.; Nunes, C.S. Rapid determination of 25-hydroxy vitamin D3 in swine tissue using an isotope dilution HPLC-MS assay. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C.; Halekoh, U.; Larsen, T.; Jensen, S. Reproductive performance and bone status markers of gilts and lactating sows supplemented with two different forms of vitamin D. J. Anim. Sci. 2010, 88, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Barger-Lux, M.J.; Heaney, R.P.; Dowell, S.; Chen, T.C.; Holick, M.F. Vitamin D and its major metabolites: Serum levels after graded oral dosing in healthy men. Osteoporos. Int. 1998, 8, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.; Bysted, A.; Andersen, R.; Bennett, T.; Brot, C.; Bügel, S.; Cashman, K.D.; Denk, E.; Harrington, M.; Teucher, B.; Walczyk, T.; et al. Vitamin D status assessed by a validated HPLC method: Within and between variation in subjects supplemented with vitamin D3. Scand. J. Clin. Lab. Investig. 2009, 69, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Gallagher, J.C.; Sai, A.; Templin, T.; Smith, L. Dose response to vitamin D supplementation in postmenopausal women. Ann. Intern. Med. 2012, 156, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecakciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 2003, 77, 204–210. [Google Scholar] [PubMed]
- Cashman, K.D.; Hill, T.R.; Lucey, A.J.; Taylor, N.; Seamans, K.M.; Muldowney, S.; Fitzgerald, A.P.; Flynn, A.; Barnes, M.S.; Horigan, G.; et al. Estimation of the dietary requirement for vitamin D in healthy adults. Am. J. Clin. Nutr. 2008, 25, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.J.; Murray, B.F. Vitamin D dose response is underestimated by Endocrine Society’s Clinical Practice Guideline. Endocr. Connect. 2013, 2, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.; Molgaard, C.; Skovgaard, L.T.; Brot, C.; Cashman, K.D.; Chabros, E.; Charzewska, J.; Flynn, A.; Jakobsen, J.; Karkkainen, M.; et al. Teenage girls and elderly women living in northern Europe have low winter vitamin D status. Eur. J. Clin. Nutr. 2005, 59, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Burild, A.; Frandsen, H.L.; Jakobsen, J. Simultaneous quantification of vitamin D3, 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in human serum by LC-MS/MS. Scand. J. Clin. Lab. Investig. 2014, 75, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Logan, V.F.; Gray, A.R.; Peddie, M.C.; Harper, M.J.; Houghton, L.A. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br. J. Nutr. 2013, 109, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Bhagatwala, J.; Zhu, H.; Parikh, S.J.; Guo, D.-H.; Kotak, I.; Huang, Y.; Havens, R.; Pham, M.; Afari, E.; Kim, S.; Cutler, C.; et al. Dose and time responses of vitamin D biomarkers to monthly vitamin D3 supplementation in overweight/obese African Americans with suboptimal vitamin d status: A placebo controlled randomized clinical trial. BMC Obes. 2015, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Stamp, T.C.B.; Haddad, J.G.; Twigg, C.A. Comparison of oral 25-hydroxycholecalciferol, vitamin D, and ultraviolet ligt as determinants of circulating 25-hydroxyvitamin D. Lancet 1977, 309, 1341–1343. [Google Scholar] [CrossRef]
- Carter, G.D.; Carter, R.; Jones, J.; Berry, J. How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin. Chem. 2004, 50, 2195–2197. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, V.; Kiely, M.; Lamberg-Allardt, C.; Durazo-arvizu, R.A.; Sempos, C.T.; Koskinen, S.; Lundqvist, A. Standardizing serum 25-hydroxyvitamin D data from four Nordic population samples using the Vitamin D Standardization Program protocols : Shedding new light on vitamin D status in Nordic individuals. Scand. J. Clin. Lab. Investig. 2015, 75, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.S.; Dawson-Hughes, B. Plasma vitamin D and 25OHD responses of young and old men to supplementation with vitamin D3. J. Am. Coll. Nutr. 2002, 21, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Fisk, C.M.; Theobald, H.E.; Sanders, T.A.B. Fortified Malted Milk Drinks Containing Low-Dose Ergocalciferol and Cholecalciferol Do Not Differ in Their Capacity to Raise Serum 25-Hydroxyvitamin D Concentrations in Healthy Men and Women Not Exposed to UV-B. J. Nutr. 2012, 142, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008, 88, 582–586. [Google Scholar]
- Viljakeinen, H.T.; Palssa, A.; Kärkkäinen, M.; Jakobsen, J.; Lamberg-Allardt, C. How much vitamin D3 do the elderly need? J. Am. Coll. Nutr. 2006, 25, 429–435. [Google Scholar] [CrossRef]
- Burild, A.; Frandsen, H.L.; Poulsen, M.; Jakobsen, J. Tissue content of vitamin D3 and 25-hydroxy vitamin D3 in minipigs after cutaneous synthesis, supplementation and deprivation of vitamin D3. Steroids 2015, 98, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.; Hyppönen, E. Determinants of vitamin D status: Focus on genetic variations. Curr. Opin. Nephrol. Hypertens. 2011, 20, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Nissen, J.; Rasmussen, L.B.; Ravn-Haren, G.; Wreford Andersen, E.; Hansen, B.; Andersen, R.; Mejborn, H.; Madsen, K.H.; Vogel, U. Common variants in CYP2R1 and GC genes predict vitamin D concentrations in healthy Danish children. PLoS ONE 2014, 9, e89907. [Google Scholar] [CrossRef] [PubMed]
- Meyer, O.; Dawson-Hughes, B.; Sidelnikov, E.; Egli, A.; Grob, D.; Staehelin, H.B.; Theiler, G.; Kressig, R.W.; Simmen, H.P.; Theiler, R.; et al. Calcifediol versus vitamin D3 effects on gait speed and trunk sway in young postmenopausal women: A double-blind randomized controlled trial. Osteoporos. Int. 2015, 26, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Bishoff-Ferrari, H.A.; Dawson-Hughes, B.; Stöcklin, E.; Sidelnikov, E.; Willett, W.C.; Edel, J.O.; Stähelin, H.B.; Wolfram, S.; Jetter, A.; Schwager, J.; et al. Oral supplementation with 25(OH)D3 versus vitamin D3: Effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J. Bone Miner. Res. 2012, 27, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Autier, P.; Gandini, S.; Mullie, P. A systematic review: Influence of vitamin D supplementation on serum 25-hydroxyvitamin D concentration. J. Clin. Endocrinol. Metab. 2012, 97, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- Bügel, S.; Sørensen, A.D.; Hels, O.; Kristensen, M.; Vermeer, C.; Jakobsen, J.; Flynn, A.; Mølgaard, C.; Cashman, K.D. Effect of phylloquinone supplementation on biochemical markers of vitamin K status and bone turnover in postmenopausal women. Br. J. Nutr. 2007, 97, 373–380. [Google Scholar] [CrossRef] [PubMed]
- European Commision Food Safety Overview. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/novel-food_applications-status_en.pdf (accessed on 14 December 2017).
- Mattila, P.H.; Piironen, V.I.; Uusi-Rauva, E.J.; Koivistoinen, P.E. Contents of cholecalciferol, ergocalciferol, and their 25-hydroxylated metabolites in milk products and raw meat and liver as determined by HPLC. J. Agric. Food Chem. 1995, 43, 2394–2399. [Google Scholar] [CrossRef]
Measure, Unit | Mean ± SD | Range |
---|---|---|
Age, year | 23 ± 3 | 20–30 |
Height, cm | 182 ± 6 | 174–194 |
Weight, kg | ||
Pre-intervention | 76 ± 7 | 60–89 |
Post-intervention | 77 ± 7 | 59–88 |
BMI, kg/cm2 | ||
Pre-intervention | 23 ± 2 | 19–27 |
Post-intervention | 23 ± 3 | 19–28 |
Dietary vitamin D *, µg/day | 1.1 ± 0.4 | 0.5–1.5 |
Dietary calcium *, mg/day | 806 ± 361 | 431–1411 |
Compound in Serum | All Baseline | Treatment Group | ||
---|---|---|---|---|
VitD3 | VitD2 | 25OH-D3 | ||
25OH-D3, nmol/L | 54.6 ± 9.0 | 52.9 ± 8.5 | 32.3 ± 7.1 | 62.7 ± 11.5 |
25OH-D2, nmol/L | 1.5 ± 1.0 | 2.2 ± 1.5 | 11.9 ± 3.1 | 2.1 ± 1.0 |
Total 25OH-D, nmol/L | 56.1 ± 8.5 | 55.1 ± 8.9 | 44.2 ± 8.0 | 64.7 ± 11.2 |
VitD3, nmol/L | 2.5 ± 1.5 | 2.0 ± 1.1 | 0.9 ± 0.8 | 0.8 ± 0.6 |
VitD2, nmol/L | 0.04 ± 0.03 | 0.05 ± 0.04 | 0.3 ± 0.4 | 0.02 ± 0.01 |
PTH, pmol/L | 3.2 ± 1.3 | 2.1 ± 0.7 | 2.8 ± 1.0 | 2.4 ± 0.9 |
Calcium, nmol/L | 2.4 ± 0.1 | 2.5 ± 0.1 | 2.5 ± 0.1 | 2.5 ± 0.1 |
Level in Serum | Treatment for Six Weeks with 10 µg of | |||
---|---|---|---|---|
VitD3 | VitD2 | 25OH-D3 | p * | |
25OH-D3, nmol/L | 52.2 (48.3; 56.3) | 31.6 (29.3; 34.1) | 61.6 (57.1; 66.5) | <0.001 |
25OH-D2, nmol/L | 1.9 a (1.5; 2.3) | 11.6 (9.2; 14.5) | 1.9 a (1.5; 2.4) | <0.001 |
Total 25OH-D, nmol/L | 54.4 (51.1; 58.0) | 43.5 (40.9; 46.4) | 63.8 (59.9; 67.9) | <0.001 |
VitD3, nmol/L | 1.8 (1.3; 2.4) | 0.7 a (0.5; 0.9) | 0.6 a (0.5; 0.8) | <0.001 |
VitD2, nmol/L | 0.04 (0.03; 0.05) | 0.22 (0.15; 0.32) | 0.02 (0.01; 0.03) | <0.001 |
PTH, pmol/L | 2.0 a (1.7; 2.4) | 2.6 b (2.2; 3.0) | 2.2 ab (1.9; 2.6) | 0.035 |
Calcium, nmol/L | 2.5 a (2.4; 2.5) | 2.5 a (2.4; 2.5) | 2.5 a (2.4; 2.5) | 0.958 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakobsen, J.; Andersen, E.A.W.; Christensen, T.; Andersen, R.; Bügel, S. Vitamin D Vitamers Affect Vitamin D Status Differently in Young Healthy Males. Nutrients 2018, 10, 12. https://doi.org/10.3390/nu10010012
Jakobsen J, Andersen EAW, Christensen T, Andersen R, Bügel S. Vitamin D Vitamers Affect Vitamin D Status Differently in Young Healthy Males. Nutrients. 2018; 10(1):12. https://doi.org/10.3390/nu10010012
Chicago/Turabian StyleJakobsen, Jette, Elisabeth Anne Wreford Andersen, Tue Christensen, Rikke Andersen, and Susanne Bügel. 2018. "Vitamin D Vitamers Affect Vitamin D Status Differently in Young Healthy Males" Nutrients 10, no. 1: 12. https://doi.org/10.3390/nu10010012
APA StyleJakobsen, J., Andersen, E. A. W., Christensen, T., Andersen, R., & Bügel, S. (2018). Vitamin D Vitamers Affect Vitamin D Status Differently in Young Healthy Males. Nutrients, 10(1), 12. https://doi.org/10.3390/nu10010012