Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin
Abstract
:1. Introduction
2. Methods and Data
2.1. Research Region and Data
2.2. WRF Physical Configuration
2.3. Assimilation Methodology
2.4. Experimental Design
2.5. Characteristic of the Background Error Covariance
2.6. Remote Sensing Precipitation Products
2.6.1. TRMM
2.6.2. FY-2D
2.6.3. Remote Sensing Data Preprocessing
2.6.4. Comparison between the TRMM and FY-2D Remote Sensing Precipitation Products
3. Results
3.1. Single Observation Test
3.2. Observation Correlation Analysis in the First Domain
3.3. Control Variable Simulation in the Second Domain
3.4. Precipitation Foresting over 12 h, 24 h and 48 h
3.5. Evaluation of Precipitation Forecasting Using Rain Gauge Data
3.6. Evaluation of Other Variables Using Observation Data
3.7. One More Case Study on 1 July 2015
4. Discussion
4.1. Comparing Precipitation Products between Satellite-retrieved and NWPs’ Simulation
4.2. Effect of Remote Sensing Product Assimilation on WRF Forecasting
4.3. Effect of Assimilating Remote Sensing Precipitation Products on Spin-Up Time
4.4. Influence of the Accuracy of Remote Sensing Precipitation Products on Data Assimilation Result
4.5. Comparison of Measurements of Remote Sensing Precipitation Products
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [Google Scholar] [CrossRef]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.; Imam, B.; Kuligowski, R.; Skahill, B. Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; McLaughlin, D.B.; Entekhabi, D. Quantifying precipitation uncertainty for land data assimilation applications. Mon. Weather Rev. 2015, 143, 3276–3299. [Google Scholar] [CrossRef]
- Ward, E.; Buytaert, W.; Peaver, L.; Wheater, H. Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Adv. Water Resour. 2011, 34, 1222–1231. [Google Scholar] [CrossRef]
- Sevruk, B.; Ondrás, M.; Chvíla, B. The WMO precipitation measurement intercomparisons. Atmos. Res. 2009, 92, 376–380. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Fritsch, J.M.; Carbone, R.E. Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Am. Meteorol. Soc. 2004, 85, 955–965. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Cheng, G.; Li, H.; He, X. Development and evaluation of a river-basin-scale high spatio-temporal precipitation data set using the WRF model: A case study of the Heihe River Basin. Remote Sens. 2015, 7, 9230–9252. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Clark, A.J. NAM model forecasts of warm-season quasi-stationary frontal environments in the Central United States. Weather Forecast. 2010, 25, 1281–1292. [Google Scholar] [CrossRef]
- Marécal, V.; Mahfouf, J.-F. Variational retrieval of temperature and humidity profiles from TRMM precipitation data. Mon. Weather Rev. 2000, 128, 3853–3866. [Google Scholar] [CrossRef]
- Marécal, V.; Mahfouf, J.F. Experiments on 4D-Var assimilation of rainfall data using an incremental formulation. Q. J. R. Meteorol. Soc. 2003, 129, 3137–3160. [Google Scholar] [CrossRef]
- Jones, T.A.; Stensrud, D.J.; Minnis, P.; Palikonda, R. Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Weather Rev. 2013, 141, 2272–2289. [Google Scholar] [CrossRef]
- Jones, T.A.; Otkin, J.A.; Stensrud, D.J.; Knopfmeier, K. Assimilation of satellite infrared radiances and doppler radar observations during a cool season observing system simulation experiment. Mon. Weather Rev. 2013, 141, 3273–3299. [Google Scholar] [CrossRef]
- Jones, T.A.; Otkin, J.A.; Stensrud, D.J.; Knopfmeier, K. Forecast evaluation of an observing system simulation experiment assimilating both radar and satellite data. Mon. Weather Rev. 2014, 142, 107–124. [Google Scholar] [CrossRef]
- Županski, D.; Mesinger, F. Four-dimensional variational assimilation of precipitation data. Mon. Weather Rev. 1995, 123, 1112–1127. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Xue, J.; Bedi, H.S.; Ingles, K.; Oosterhof, D. Physical initialization for numerical weather prediction over the tropics. Tellus A 1991, 43, 53–81. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Bedi, H.S.; Ingles, K. Physical initialization using SSM/I rain rates. Tellus A 1993, 45, 247–269. [Google Scholar] [CrossRef]
- Puri, K.; Miller, M. Sensitivity of ECMWF analyses-forecasts of tropical cyclones to cumulus parameterization. Mon. Weather Rev. 1990, 118, 1709–1742. [Google Scholar] [CrossRef]
- Treadon, R.E. Physical initialization in the NMC global data assimilation system. Meteorol. Atmos. Phys. 1996, 60, 57–86. [Google Scholar] [CrossRef]
- Tsuyuki, T. Variational data assimilation in the tropics using precipitation data. Part III: Assimilation of SSM/I precipitation rates. Mon. Weather Rev. 1997, 125, 1447–1464. [Google Scholar] [CrossRef]
- Bauer, P.; Ohring, G.; Kummerow, C.; Auligne, T. Assimilating satellite observations of clouds and precipitation into NWP models. Bull. Am. Meteorol. Soc. 2011, 92, ES25–ES28. [Google Scholar] [CrossRef]
- Hou, A.Y.; Zhang, S.Q.; Reale, O. Variational continuous assimilation of TMI and SSM/I rain rates: Impact on GEOS-3 hurricane analyses and forecasts. Mon. Weather Rev. 2004, 132, 2094–2109. [Google Scholar] [CrossRef]
- Kumar, P.; Kishtawal, C.; Pal, P. Impact of satellite rainfall assimilation on weather research and forecasting model predictions over the Indian region. J. Geophys. Res. Atmos. 2014, 119, 2017–2031. [Google Scholar] [CrossRef]
- Lopez, P. Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF. Mon. Weather Rev. 2011, 139, 2098–2116. [Google Scholar] [CrossRef]
- Pu, Z.; Tao, W.-K.; Braun, S.; Simpson, J.; Jia, Y.; Halverson, J.; Olson, W.; Hou, A. The impact of TRMM data on mesoscale numerical simulation of super typhoon Paka. Mon. Weather Rev. 2002, 130, 2448–2458. [Google Scholar] [CrossRef]
- Zou, X.; Kuo, Y. Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Weather Rev. 1996, 124, 2859–2882. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Gao, Y.X.; Wang, J.M.; Ji, G.L.; Shen, Z.B.; Cheng, L.S.; Cheng, J.Y.; Li, S.Q. Some achievements in scientific research during HEIFE. Plateau Meteorol. 1994, 13, 225–236. (In Chinese) [Google Scholar]
- Li, X.; Li, X.; Li, Z.; Ma, M.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.; Yan, G.; et al. Watershed allied telemetry experimental research. J. Geophys. Res. Atmos. 2009, 114, D22103. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Pan, X.; Tian, X.; Li, X.; Xie, Z.; Shao, A.; Lu, C. Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method. J. Geophys. Res. Atmos. 2012, 117, D17113. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note; 2008; Mesoscale and Microscale Meteorology Division: Boulder, CO, USA; p. 475.
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Barker, D.M.; Huang, W.; Guo, Y.R.; Bourgeois, A.J.; Xiao, Q.N. A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef]
- Barker, D.; Huang, X.-Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Xiao, Q.; Barker, D.M.; Zhang, X.; Michalakes, J.; Huang, W.; Henderson, T.; Bray, J.; Chen, Y.; Ma, Z. Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Weather Rev. 2009, 137, 299–314. [Google Scholar] [CrossRef]
- Chu, K.; Xiao, Q.; Liu, C. Experiments of the WRF three-/four-dimensional variational (3/4DVAR) data assimilation in the forecasting of Antarctic cyclones. Meteorol. Atmos. Phys. 2013, 120, 145–156. [Google Scholar] [CrossRef]
- Hascoët, L.; Pascual, V. TAPENADE 2.1 User’s Guide; Rapport Technique 300; INRIA: Sophia Antipolis, France, 2004. [Google Scholar]
- Zhang, X.; Huang, X.-Y.; Pan, N. Development of the upgraded tangent linear and adjoint of the weather research and forecasting (WRF) model. J. Atmos. Ocean. Technol. 2013, 30, 1180–1188. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.-Y.; Liu, J.; Poterjoy, J.; Weng, Y.; Zhang, F.; Wang, H. Development of an efficient regional four-dimensional variational data assimilation system for WRF. J. Atmos. Ocean. Technol. 2014, 31, 2777–2794. [Google Scholar] [CrossRef]
- Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D.; Barre, J. Generalized background error covariance matrix model (GEN_BE v2.0). Geosci. Model Dev. 2015, 8, 669–696. [Google Scholar] [CrossRef]
- Rabier, F.; McNally, A.; Andersson, E.; Courtier, P.; Unden, P.; Eyre, J.; Hollingsworth, A.; Bouttier, F. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Q. J. R. Meteorol. Soc. 1998, 124, 1809–1829. [Google Scholar] [CrossRef]
- Wang, J.; Li, J. A four-dimensional scheme based on singular value decomposition (4DSVD) for chaotic-attractor-theory-oriented data assimilation. J. Geophys. Res. 2009, 114, D02114. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Wilheit, T.; Hutchison, K. Water vapour profile retrievals from SSM/T-2 data constrained by infrared-based cloud parameters. Int. J. Remote Sens. 1997, 18, 3263–3277. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hong, Y.; Yuan, D.-H.; Liu, Y.-Q.; Gao, P. Dynamical estimation of short time precipitation from satellite cloud parameters. Meteor. Sci. Technol. 2011, 39, 266–271. [Google Scholar]
- Robinson, A.R.; Lermusiaux, P.F.J. An Overview of Data Assimilation; Harvard Reports in Physical/Interdisciplinary Ocean Science; No. 62; The Division of Engineering and Applied Sciences: Harvard University, Cambridge, MA, USA, 2000. [Google Scholar]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The global precipitation measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2016. [Google Scholar] [CrossRef]
- Qin, Y.; Gong, J.; Li, Z.; Sheng, R. Assimilation of Doppler radar observations with an ensemble square root filter: A squall line case study. J. Meteorol. Res. 2014, 28, 230–251. [Google Scholar] [CrossRef]
- Shao, A.; Qiu, C.; Niu, G.-Y. A piecewise modeling approach for climate sensitivity studies: Tests with a shallow-water model. J. Meteorol. Res. 2015, 29, 735–746. [Google Scholar] [CrossRef]
- Peng, B.; Shi, J.; Ni-Meister, W.; Zhao, T.; Ji, D. Evaluation of TRMM multisatellite precipitation analysis (TMPA) products and their potential hydrological application at an arid and semiarid basin in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3915–3930. [Google Scholar] [CrossRef]
- Wu, X.; Yang, M.; Wu, H.; Wu, Y.; Wang, X. Verifying and applying the TRMM TMPA in Heihe River Basin. J. Glaciol. Geocryol. 2013, 35, 310–319. [Google Scholar]
Physics Processes | Domain 1 (25 km) | Domain 2 (5 km) |
---|---|---|
Horizontal | 60 × 60 | 130 × 130 |
Time step | 150 s | 30 s |
Microphysics | single-moment 5-class scheme | single-moment 5-class scheme |
Cumulus | Kain-Fritsch scheme | Kain-Fritsch scheme |
PBL | YSU scheme | YSU scheme |
Shortwave radiation | Dudhia scheme | Dudhia scheme |
Longwave radiation | Rapid radiative transfer model | Rapid radiative transfer model |
Surface-Land | 5-layer thermal diffusion | 5-layer thermal diffusion |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Li, X.; Cheng, G.; Hong, Y. Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin. Remote Sens. 2017, 9, 963. https://doi.org/10.3390/rs9090963
Pan X, Li X, Cheng G, Hong Y. Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin. Remote Sensing. 2017; 9(9):963. https://doi.org/10.3390/rs9090963
Chicago/Turabian StylePan, Xiaoduo, Xin Li, Guodong Cheng, and Yang Hong. 2017. "Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin" Remote Sensing 9, no. 9: 963. https://doi.org/10.3390/rs9090963
APA StylePan, X., Li, X., Cheng, G., & Hong, Y. (2017). Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin. Remote Sensing, 9(9), 963. https://doi.org/10.3390/rs9090963