Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Products
2.2. Merging Methodology Using CALIOP and CPR
2.3. Surface Observations
2.3.1. Fog Observations
2.3.2. Ceilometer Observations
2.4. Column Model Description
3. Results
3.1. Seeder-Feeder Interactions
3.1.1. Model Evaluation
3.1.2. SFI Microphysics
3.2. Satellite-Based Climatology of CBH Using CALIOP and CPR
3.2.1. Single Sensor Analysis
3.2.2. Combined Sensor Analysis
3.3. Satellite-Based Climatology of LLCF Using MODIS
3.3.1. Spatial Patterns of LLCF CTH
3.3.2. Optical and Microphysical Properties of LLCF
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AGL | Above Ground Level |
ASOS | Automated Surface Observing System |
ATBDs | Algorithm Theoretical Basis Documents |
AWOS | Automated Weather Observing System |
C6 | Collection 6 |
CALIOP | Cloud-Aerosol Lidar with Orthogonal Polarization |
CALIPSO | Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations |
CBH | Cloud Base Height |
CD | Clingmans Dome |
CER | Cloud Particle Effective Radius |
COT | Cloud Optical Thickness |
CPR | Cloud Profiling Radar |
CTH | Cloud Top Height |
CTP | Cloud Top Pressure |
CV | Coefficient of Variance |
CWP | Cloud Water Path |
ELK | Elkmont |
EOS | Earth Observing System |
FA | False Alarms |
FAA | Federal Aviation Administration |
F-DSDs | Fog Drop Size Distributions |
FOV | Field-Of-View |
GEOPROF | Geometrical Profiling Product |
LES | Large-Eddy Simulations |
LLC | Low-Level Clouds |
LLCF | Low-Level Clouds and Fog |
LWC | Liquid Water Content |
MD | Missed Detections |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MPS | Meteorological Particle Spectrometer |
MRR | Micro Rain Radar |
MSL | Mean Sea Level |
NCDC | National Climatic Data left |
NOAA | National Oceanic and Atmospheric Administration |
PK | Purchase Knob |
PKT | Purchase Knob Tower |
PR | Precipitation Radar |
R-DSDs | Rain Drop Size Distributions |
RG | Rain Gauge |
SA | Southern Appalachians |
SAM | Southern Appalachian Mountains |
SBE | Stochastic Break Equation |
SCE | Stochastic Collection Equation |
SFI | Seeder-Feeder Interactions |
SM | Statute Miles |
TBC | Top Boundary Condition |
TRMM | Tropical Rainfall Measurement Mission |
TVA | Tennessee Valley Association |
Appendix A. Additional Formulae
References
- Barros, A.P. Orographic precipitation, freshwater resources, and climate vulnerabilities in mountainous regions. In Climate Vulnerability: Understanding and Addressing Threats to Essential Resources; Elsevier: Amsterdam, The Netherlands, 2013; pp. 57–78. [Google Scholar]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Goldsmith, G.R.; Matzke, N.J.; Dawson, T.E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 2013, 16, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Gotsch, S.G.; Crausbay, S.D.; Giambelluca, T.W.; Weintraub, A.E.; Longman, R.J.; Asbjornsen, H.; Hotchkiss, S.C.; Dawson, T.E. Water relations and microclimate around the upper limit of a cloud forest in maui, hawai'i. Tree Physiol. 2014, 34, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.S.; Eller, C.B.; Bittencourt, P.R.; Mulligan, M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 2014, 113, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Weathers, K.C. The importance of cloud and fog in the maintenance of ecosystems. Trends Ecol. Evol. 1999, 14, 214–215. [Google Scholar] [CrossRef]
- National Climatic Data Center. Climate Atlas of the United States; U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration: Ashville, NC, USA, 2000.
- Berry, Z.C.; Smith, W.K. Cloud pattern and water relations in picea rubens and abies fraseri, southern Appalachian mountains, USA. Agric. For. Meteorol. 2012, 162, 27–34. [Google Scholar] [CrossRef]
- Berry, Z.C.; Hughes, N.M.; Smith, W.K. Cloud immersion: An important water source for spruce and fir saplings in the southern Appalachian mountains. Oecologia 2014, 174, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Berry, Z.C.; Smith, W.K. Ecophysiological importance of cloud immersion in a relic spruce-fir forest at elevational limits, southern Appalachian mountains, USA. Oecologia 2013, 173, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.M.; Smith, W.K. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce–fir forest (USA). Am. J. Bot. 2006, 93, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.P.; Lettenmaier, D.P. Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Weather Rev. 1993, 121, 1195–1214. [Google Scholar] [CrossRef]
- Duan, Y.; Wilson, A.M.; Barros, A.P. Scoping a field experiment: Error diagnostics of trmm precipitation radar estimates in complex terrain as a basis for iphex2014. Hydrol. Earth Syst. Sci. 2015, 19, 1501–1520. [Google Scholar] [CrossRef]
- Wilson, A.M.; Barros, A.P. Landform controls on low level moisture convergence and the diurnal cycle of warm season orographic rainfall in the southern appalachians. J. Hydrol. 2015, 531, 475–493. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P. Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation—Experiments in the inner region of the Great Smoky mountains. J. Hydrol. 2010, 391, 141–156. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P. Assessing satellite-based precipitation estimates in the Southern Appalachian mountains using rain gauges and TRMM PR. Adv. Geosci. 2010, 25, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Barros, A.P. An investigation of warm rainfall microphysics in the Southern Appalachians: Orographic enhancement via low-level seeder–feeder interactions. J. Atmos. Sci. 2014, 71, 1783–1805. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P. A robust numerical solution of the stochastic collection–breakup equation for warm rain. J. Appl. Meteorol. Climatol. 2007, 46, 1480–1497. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P. Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model. Adv. Geosci. 2007, 10, 145–152. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P.; Testik, F.Y. On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci. 2012, 69, 1534–1546. [Google Scholar] [CrossRef]
- Chen, R.; Chang, F.-L.; Li, Z.; Ferraro, R.; Weng, F. Impact of the vertical variation of cloud droplet size on the estimation of cloud liquid water path and rain detection. J. Atmos. Sci. 2007, 64, 3843–3853. [Google Scholar] [CrossRef]
- Hagihara, Y.; Okamoto, H.; Yoshida, R. Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution. J. Geophys. Res. 2010, 115, D00H33. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O'Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CloudSat mission and the a-train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Mace, G.G.; Zhang, Q.; Vaughan, M.; Marchand, R.; Stephens, G.; Trepte, C.; Winker, D. A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res. 2009, 114, D00A26. [Google Scholar] [CrossRef]
- Young, S.A.; Vaughan, M.A. The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: Algorithm description. J. Atmos. Ocean. Technol. 2009, 26, 1105–1119. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE 2003. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Powell, K.A.; Winker, D.M.; Hostetler, C.A.; Kuehn, R.E.; Hunt, W.H.; Getzewich, B.J.; Young, S.A.; Liu, Z.; McGill, M.J. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Ocean. Technol. 2009, 26, 2034–2050. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.G.; Austin, R.; et al. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. 2008, 113, D00A18. [Google Scholar] [CrossRef]
- Marchand, R.; Mace, G.G.; Ackerman, T.; Stephens, G. Hydrometeor detection using CloudSat—An earth-orbiting 94-Ghz cloud radar. J. Atmos. Ocean. Technol. 2008, 25, 519–533. [Google Scholar] [CrossRef]
- Mace, G.G.; Zhang, Q. The cloudsat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos. 2014, 119, 9441–9462. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2017, 55, 502–525. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS cloud-top property refinements for collection 6. J. Appl. Meteorol. Climatol. 2012, 51, 1145–1163. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.C.; McGill, M. Cloud detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol. 2008, 25, 1073–1086. [Google Scholar] [CrossRef]
- McGill, M.J.; Vaughan, M.A.; Trepte, C.R.; Hart, W.D.; Hlavka, D.L.; Winker, D.M.; Kuehn, R. Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res. 2007, 112, D20201. [Google Scholar] [CrossRef]
- Weisz, E.; Li, J.; Menzel, W.P.; Heidinger, A.K.; Kahn, B.H.; Liu, C.-Y. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett. 2007, 34, L17811. [Google Scholar] [CrossRef]
- Hagihara, Y.; Okamoto, H.; Luo, Z.J. Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics. J. Geophys. Res. Atmos. 2014, 119, 4087–4106. [Google Scholar] [CrossRef]
- Haynes, J.M.; Stephens, G.L. Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett. 2007, 34, L09811. [Google Scholar] [CrossRef]
- Kim, S.-W.; Chung, E.-S.; Yoon, S.-C.; Sohn, B.-J.; Sugimoto, N. Intercomparisons of cloud-top and cloud-base heights from ground-based lidar, CloudSat and Calipso measurements. Int. J. Remote Sens. 2011, 32, 1179–1197. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Lauer, A.; Hamilton, K.; Xie, F. Cloud base and top heights in the Hawaiian region determined with satellite and ground-based measurements. Geophys. Res. Lett. 2012, 39, L15706. [Google Scholar] [CrossRef]
- Juvik, J.O.; Nullet, D. Comments on “a proposed standard fog collector for use in high-elevation regions”. J. Appl. Meteorol. 1995, 34, 2108–2110. [Google Scholar] [CrossRef]
- Baumgardner, D.; Kok, G.; Dawson, W.; O’Connor, D.; Newton, R. A new groundbased precipitation spectrometer: The meteorological particle sensor (MPS). In Proceedings of the 11th Conference on Cloud Physics, Ogden, UT, USA, 2–7 June 2002. [Google Scholar]
- Knollenberg, R.G. The optical array: An alternative to scattering or extinction for airborne particle size determination. J.Appl. Meteorol. 1970, 9, 86–103. [Google Scholar] [CrossRef]
- Sun, B.; Karl, T.R.; Seidel, D.J. Changes in cloud-ceiling heights and frequencies over the United States since the early 1950s. J. Clim. 2007, 20, 3956–3970. [Google Scholar] [CrossRef]
- ASOS Program Office Staff. Automated Surface Observing System Users Guide; ASOS Program Office, National Weather Service: Silver Spring, MD, USA, 1998.
- Testik, F.Y.; Barros, A.P. Toward elucidating the microstructure of warm rainfall: A survey. Rev. Geophys. 2007, 45, RG2003. [Google Scholar] [CrossRef]
- Barros, A.P.; Prat, O.P.; Shrestha, P.; Testik, F.Y.; Bliven, L.F. Revisiting low and list (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling. J. Atmos. Sci. 2008, 65, 2983–2993. [Google Scholar] [CrossRef]
- Testik, F.Y.; Barros, A.P.; Bliven, L.F. Toward a physical characterization of raindrop collision outcome regimes. J. Atmos. Sci. 2011, 68, 1097–1113. [Google Scholar] [CrossRef]
- Barros, A.P.; Joshi, M.; Putkonen, J.; Burbank, D.W. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett. 2000, 27, 3683–3686. [Google Scholar] [CrossRef]
- Wilson, A.M.; Barros, A.P. Orographic land-atmosphere interactions and the diurnal cycle of low level clouds and fog. J. Hydrometeorol. 2017, 18, 1513–1533. [Google Scholar] [CrossRef]
- Prat, O.P.; Barros, A.P.; Williams, C.R. An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rainfall during TWP-ICE. J. Appl. Meteorol. Climatol. 2008, 47, 2797–2815. [Google Scholar] [CrossRef]
- Pinsky, M.; Khain, A.; Shapiro, M. Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmos. Res. 2000, 53, 131–169. [Google Scholar] [CrossRef]
- Pinsky, M.; Khain, A.; Krugliak, H. Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci. 2008, 65, 357–374. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Barros, A.P. Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using parsivel disdrometers in the southern Appalachian mountains. Geomorphology 2015, 228, 28–40. [Google Scholar] [CrossRef]
- Del Genio, A.D.; Wolf, A.B. The temperature dependence of the liquid water path of low clouds in the southern great plains. J. Clim. 2000, 13, 3465–3486. [Google Scholar] [CrossRef]
- Doran, J.C.; Zhong, S. Variations in mixed-layer depths arising from inhomogeneous surface conditions. J. Clim. 1995, 8, 1965–1973. [Google Scholar] [CrossRef]
- Holz, R.E.; Ackerman, S.A.; Nagle, F.W.; Frey, R.; Dutcher, S.; Kuehn, R.E.; Vaughan, M.A.; Baum, B. Global moderate resolution imaging spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res. 2008, 113, D00A19. [Google Scholar] [CrossRef]
- Barros, A.P.; Lettenmaier, D.P. Incorporation of an evaporative cooling scheme into a dynamic model of orographic precipitation. Mon. Weather Rev. 1994, 122, 2777–2783. [Google Scholar] [CrossRef]
- Barros, A.P.; Kuligowski, R.J. Orographic effects during a severe wintertime rainstorm in the appalachian mountains. Mon. Weather Rev. 1998, 126, 2648–2672. [Google Scholar] [CrossRef]
- Maddux, B.C.; Ackerman, S.A.; Platnick, S. Viewing geometry dependencies in MODIS cloud products. J. Atmos. Ocean. Technol. 2010, 27, 1519–1528. [Google Scholar] [CrossRef]
- Testik, F.Y. Outcome regimes of binary raindrop collisions. Atmos. Res. 2009, 94, 389–399. [Google Scholar] [CrossRef]
Site Name | Latitude | Longitude | Elevation (m) | Fog Observation Period |
---|---|---|---|---|
Purchase Knob (PK) | 35.586 | −83.073 | 1495 | 1 June 2013–19 May 2015 |
Purchase Knob Tower (PKT) | 35.588 | −83.065 | 1485 | 4 July 2013–5 October 2015 |
Clingmans Dome (CD) | 35.562 | −83.497 | 1956 | 1 June–10 September 2014 |
Elkmont (ELK) | 35.665 | −83.590 | 634 | 25 September–10 December 2015 |
Avg. Period | Dmax (μm) | N0 (cm−3 μm−1) | Λ (μm−1) | LWC (g/m3) | |
---|---|---|---|---|---|
FOG #1 | 1 min | 50 | 0.59 | 0.11 | 0.0104 |
FOG #2a | 10 min | 50 | 0.37 | 0.11 | 0.006 |
FOG #2b | 10 min | 100 | 0.37 | 0.11 | 0.0074 |
FOG #3 | 13 min | 50 | 2.15 | 0.17 | 0.0064 |
FOG #4 | 15 min | 50 | 4.37 | 0.18 | 0.0101 |
FOG #5 | 17 min | 50 | 3.75 | 0.19 | 0.0085 |
FOG #6 | 20 min | 50 | 2.95 | 0.18 | 0.0078 |
Correct Detection | False Alarm | Missed Detection | Correct Rejection | Correlation Coef. (r) | Total # Pairs | |
---|---|---|---|---|---|---|
CALIOP (5 km) | 38 (19%) | 2 (1%) | 60 (30%) | 101 (50%) | 0.50 | 201 |
CALIOP (10 km) | 47 (24%) | 2 (1%) | 51 (25%) | 101 (50%) | 0.52 | 201 |
CALIOP (20 km) | 64 (32%) | 9 (4%) | 34 (17%) | 94 (47%) | 0.56 | 201 |
CALIOP (30 km) | 66 (33%) | 15 (7%) | 32 (16%) | 88 (44%) | 0.51 | 201 |
CALIOP (40 km) | 69 (34%) | 21 (11%) | 29 (14%) | 82 (41%) | 0.50 | 201 |
Merged (10 km) | 70 (35%) | 5 (2%) | 28 (14%) | 98 (49%) | 0.61 | 201 |
Merged (20 km) | 86 (43%) | 12 (6%) | 12 (6%) | 91 (45%) | 0.66 | 201 |
Correct Detection | False Alarm | Missed Detection | Correct Rejection | Correlation Coef. (r) | Total # Pairs | |
---|---|---|---|---|---|---|
CALIOP (5 km) | 58 (28%) | 4 (2%) | 70 (33%) | 79 (37%) | 0.38 | 211 |
CALIOP (10 km) | 61 (29%) | 6 (3%) | 67 (32%) | 77 (36%) | 0.36 | 211 |
CALIOP (20 km) | 77 (36%) | 6 (3%) | 51 (25%) | 77 (36%) | 0.49 | 211 |
CALIOP (30 km) | 90 (43%) | 12 (6%) | 38 (18%) | 71 (33%) | 0.52 | 211 |
CALIOP (40 km) | 95 (45%) | 18 (9%) | 33 (15%) | 65 (31%) | 0.47 | 211 |
Merged (20 km) | 100 (47%) | 8 (4%) | 28 (13%) | 75 (36%) | 0.59 | 211 |
Merged (30 km) | 110 (52%) | 14 (7%) | 18 (8%) | 69 (33%) | 0.63 | 211 |
Correct Detection | False Alarm | Missed Detection | Correct Rejection | Correlation Coef. (r) | Total # Pairs | |
---|---|---|---|---|---|---|
CALIOP (5 km) | 41 (20%) | 8 (4%) | 70 (33%) | 90 (43%) | 0.22 | 209 |
CALIOP (10 km) | 44 (21%) | 8 (4%) | 67 (32%) | 90 (43%) | 0.32 | 209 |
CALIOP (20 km) | 63 (30%) | 31 (15%) | 48 (23%) | 67 (32%) | 0.38 | 209 |
CALIOP (30 km) | 76 (36%) | 43 (21%) | 35 (17%) | 55 (26%) | 0.47 | 209 |
CALIOP (40 km) | 77 (37%) | 47 (22%) | 34 (16%) | 51 (25%) | 0.43 | 209 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Barros, A.P. Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations. Remote Sens. 2017, 9, 920. https://doi.org/10.3390/rs9090920
Duan Y, Barros AP. Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations. Remote Sensing. 2017; 9(9):920. https://doi.org/10.3390/rs9090920
Chicago/Turabian StyleDuan, Yajuan, and Ana P. Barros. 2017. "Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations" Remote Sensing 9, no. 9: 920. https://doi.org/10.3390/rs9090920
APA StyleDuan, Y., & Barros, A. P. (2017). Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations. Remote Sensing, 9(9), 920. https://doi.org/10.3390/rs9090920