Next Article in Journal
Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery
Previous Article in Journal
A Simple Normalized Difference Approach to Burnt Area Mapping Using Multi-Polarisation C-Band SAR
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessEditor’s ChoiceArticle
Remote Sens. 2017, 9(8), 793;

Application of Abundance Map Reference Data for Spectral Unmixing

Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA
Author to whom correspondence should be addressed.
Received: 13 June 2017 / Revised: 19 July 2017 / Accepted: 27 July 2017 / Published: 1 August 2017
Full-Text   |   PDF [6911 KB, uploaded 1 August 2017]   |  


Reference data (“ground truth”) maps have traditionally been used to assess the accuracy of classification algorithms. These maps typically classify pixels or areas of imagery as belonging to a finite number of ground cover classes, but do not include sub-pixel abundance estimates; therefore, they are not sufficiently detailed to directly assess the performance of spectral unmixing algorithms. Our research aims to efficiently generate, validate, and apply abundance map reference data (AMRD) to airborne remote sensing scenes. Scene-wide AMRD for this study were generated using the remotely sensed reference data (RSRD) technique, which spatially aggregates classification or unmixing results from fine scale imagery (e.g., 1-m GSD) to co-located coarse scale imagery (e.g., 10-m GSD or larger). Validation of the accuracy of these methods was previously performed for generic 10 m × 10 m coarse scale imagery, resulting in AMRD with known accuracy. The purpose of this paper was to apply this previously validated AMRD to specific examples of airborne coarse scale imagery. Application of AMRD involved three main parts: (1) spatial alignment of coarse and fine scale imagery; (2) aggregation of fine scale abundances to produce coarse scale imagery specific AMRD; and (3) demonstration of comparisons between coarse scale unmixing abundances and AMRD. Spatial alignment was performed using our new scene-wide spectral comparison (SWSC) algorithm, which aligned imagery with accuracy approaching the distance of a single fine scale pixel. We compared simple rectangular aggregation to coarse sensor point-spread function (PSF) aggregation, and found that PSF returned lower error, but that rectangular aggregation more accurately estimated true AMRD at ground level. We demonstrated various metrics for comparing unmixing results to AMRD, including several new techniques which adjust for known error in the reference data itself. These metrics indicated that fully constrained linear unmixing of AVIRIS imagery across all three scenes returned an average error of 10.83% per class and pixel. Our reference data research has demonstrated a viable methodology to efficiently generate, validate, and apply AMRD to specific examples of airborne remote sensing imagery, thereby enabling direct quantitative assessment of spectral unmixing performance. View Full-Text
Keywords: reference data; ground truth; imaging spectroscopy; hyperspectral; unmixing; classification; abundance map; subpixel reference data; ground truth; imaging spectroscopy; hyperspectral; unmixing; classification; abundance map; subpixel

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Williams, M.D.; Kerekes, J.P.; Aardt, J.V. Application of Abundance Map Reference Data for Spectral Unmixing. Remote Sens. 2017, 9, 793.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top