Evaluating the Differences in Modeling Biophysical Attributes between Deciduous Broadleaved and Evergreen Conifer Forests Using Low-Density Small-Footprint LiDAR Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plots
2.3. Aerial Orthophotos and Forest Type Map
2.4. Airborne LiDAR Data
2.5. LiDAR Variables
2.6. Correlation Analysis
2.7. Regression Analysis
3. Results
3.1. Correlation Coefficients
3.2. Regression Analysis and Validation
3.3. Biomass Distribution
4. Discussion
4.1. Correlations
4.2. Regression Analysis
4.3. Biomass Distribution
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2015 How Are the World’s Forests Changing? 2nd ed.; FAO: Rome, Italy, 2016; pp. 1–44. [Google Scholar]
- West, P.W. Tree and Forest Measurement, 2nd ed.; Springer: Berlin, Germany, 2009; pp. 22–63. [Google Scholar]
- Arp, H.; Griesbach, J.C.; Burns, J.P. Mapping in Tropical Forests; A new approach using the laser APR. PE&RS 1982, 48, 91–100. [Google Scholar]
- Aldred, A.H.; Bonner, G.M. Application of Airborne Lasers to Forest Surveys (Inst. Information Report PI-X-51); Petawawa National Forestry: Petawawa, ON, Canada, 1985; pp. 1–62.
- Næsset, E. Area-Based Inventory in Norway—From Innovation to An Operational Reality. In Forestry Applications of Airborne Laser Scanning; Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 27, pp. 215–240. [Google Scholar]
- Nelson, R.; Krabill, W.; Tonelli, J. Estimating forest biomass and volume using airborne laser data. Remote Sens. Environ. 1988, 24, 247–267. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.; Cohen, W.B.; Parker, G.; Shugart, H.H. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens. Environ. 1999, 67, 83–98. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.C.; Spies, T.A.; Harding, D. Lidar remote sensing of the canopy structure and biophysical properities of Douglas-fir western hemlock forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
- Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning lidar. PE&RS 2000, 66, 1367–1371. [Google Scholar]
- Holmgren, J.; Nilsson, M.; Olsson, H. Estimation of tree height and stem volume on plots using airborne laser scanning. For. Sci. 2003, 49, 419–428. [Google Scholar]
- Næsset, E.; Økland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Næsset, E. Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small foot-print airborne scanning laser. Remote Sens. Environ. 2004, 91, 243–255. [Google Scholar] [CrossRef]
- Magnusson, M.; Fransson, J.E.S.; Holmgren, J. Effects on estimation accuracy of forest variables using different pulse density of laser data. For. Sci. 2007, 53, 619–626. [Google Scholar]
- Takahashi, T.; Yamamoto, K.; Senda, Y.; Tsuzuku, M. Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J. For. Res. 2005, 10, 135–142. [Google Scholar] [CrossRef]
- McCombs, J.W.; Roberts, S.D.; Evans, D.L. Influence of fusing LiDAR and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation. For. Res. 2003, 49, 457–466. [Google Scholar]
- Lim, K.; Treitz, P.; Baldwin, K.; Morrison, I.; Green, J. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Can. J. Remote Sens. 2003, 29, 658–678. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.; Nelson, R. Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sens. Environ. 2009, 113, 182–196. [Google Scholar] [CrossRef]
- He, Q.S.; Cao, C.X.; Chen, E.X.; Sun, G.Q.; Ling, F.L.; Pang, Y.; Zhang, H.; Ni, W.J.; Xu, M.; Li, Z.-Y. Forest stand biomass estimation using ALOS PALSAR data based on LiDAR-derived prior knowledge in the Qilian Mountain, western China. Int. J. Remote Sens. 2012, 33, 710–729. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Hermosilla, T.; Innes, J.; Dai, J.; She, G. Using small-footprint discrete and full-waveform airborne lidar metrics to estimate total biomass and biomass components in subtropical forests. Remote Sens. 2014, 6, 7110–7135. [Google Scholar] [CrossRef]
- Mora, B.; Wulder, M.A.; White, J.C.; Hobart, G. Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR. Remote Sens. 2013, 5, 2308–2326. [Google Scholar] [CrossRef]
- Tsuzuki, H.; Kusakabe, T.; Sueda, T. Long-range estimation of standing timber stock in western boreal forest of Canada using airborne laser altimetry. J. Jpn. For. Soc. 2006, 88, 103–113, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Kwak, D.; Lee, W.; Lee, J.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using LiDAR data. J. For. Res. 2007, 12, 425–434. [Google Scholar] [CrossRef]
- Takahashi, T.; Yamamoto, K.; Senda, Y.; Tsuzuku, M. Predicting individual stem volumes of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J. For. Res. 2005, 10, 305–312. [Google Scholar] [CrossRef]
- Kankare, V.; Vastaranta, M.; Holopainen, M.; Räty, M.; Yu, X.; Hyyppä, J.; Hyyppä, H.; Alho, P.; Viitala, R. Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens. 2013, 5, 2257–2274. [Google Scholar] [CrossRef]
- Breidenbach, J.; McRoberts, R.E.; Astrupa, R. Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume. Remote Sens. Environ. 2016, 173, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Næsset, E.; Gobakken, T. Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sens. Environ. 2005, 96, 453–465. [Google Scholar] [CrossRef]
- Forestry Agency of Japan. Annual Report on Forest and Forestry in Japan Fiscal Year 2013; Forestry Agency of Japan: Tokyo, Japan, 2014; p. 223, (In Japanese with English Summary).
- Forestry Agency of Japan. Description of Stem Volume Table Development for Manmade Sugi Cedar Stands in Nagoya Regional Forestry Office; Forestry Agency of Japan: Tokyo, Japan, 1959; p. 17. (In Japanese)
- Forestry Agency of Japan. Description of Stem Volume Table Development for Manmade Hinoki Cypress Stands in Nagoya Regional Forestry Office; Forestry Agency of Japan: Tokyo, Japan, 1959; p. 14. (In Japanese)
- Forestry Agency of Japan. Description of Stem Volume Table Development for Deciduous Broadleaved Stands in Nagoya Regional Forestry Office; Forestry Agency of Japan: Tokyo, Japan, 1959; p. 19, (In Japanese with English Summary).
- Forestry Agency of Japan. Description of Stem Volume Table Development for Larch Stands in Nagoya Regional Forestry Office; Forestry Agency of Japan: Tokyo, Japan, 1963; p. 29, (In Japanese with English Summary).
- Komiyama, A.; Nakagawa, M.; Kato, S. Common allometric relationships for estimating tree biomasses in cool temperate forests of Japan. J. Jpn. For. Soc. 2011, 93, 220–225, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Fukuda, N.; Awaya, Y.; Kojima, T. Classification of forest vegetation types using LiDAR data and Quickbird images—Case study of the Daihachiga river basin in Takayama city. J. JASS 2012, 28, 115–122, (In Japanese with English Summary). [Google Scholar]
- Fukuda, N.; Awaya, Y. Investigation of DTM generation using LiDAR data—A case in Daihachiga river basin. Chubu For. Res. 2013, 61, 107–108. (In Japanese) [Google Scholar]
- Gaveau, D.L.A.; Hill, R.A. Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can. J. Remote Sens. 2003, 29, 650–657. [Google Scholar] [CrossRef]
- Rosette, J.; Suárez, J.; Nelson, R.; Los, S.; Cook, B.; North, P. Lidar Remote Sensing for Biomass Assessment. In Remote Sensing of Biomass—Principles and Applications; Fatoyinbo, T., Ed.; InTech: Rijeka, Croatia, 2012; pp. 3–26. [Google Scholar]
- Ko, C.; Gunho Sohn, G.; Remmel, T.K.; Miller, J. Hybrid Ensemble Classification of Tree Genera Using Airborne LiDAR Data. Remote Sens. 2014, 6, 11225–11243. [Google Scholar] [CrossRef]
- Yao, T.; Yang, X.; Zhao, F.; Wang, Z.; Zhang, Q.; Jupp, D.; Lovell, J.; Culvenor, D.; Newnham, G.; Ni-Meister, W. Measuring forest structure and biomass in New England forest stands using echidna ground-based lidar. Remote Sens. Environ. 2011, 115, 2965–2974. [Google Scholar] [CrossRef]
- Maltamo, K.; Eerikäinenn, J.; Pitkänen, J.; Hyyppä, M. Vehmas Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens. Environ. 2004, 90, 319–330. [Google Scholar] [CrossRef]
Forest Type | No of Plots | Average DBH (cm) | Average Tree H (m) | Stem Volume (m3 ha−1) | Above Ground Biomass (Mg ha−1) | Total Dry Biomass (Mg ha−1) |
---|---|---|---|---|---|---|
Japanese cedar * | 4 | 1.1–9.4 | 1.8–5.8 | 2.4–80.9 | 1.9–67.5 | 2.6–86.1 |
8 | 22.6–41.2 | 18.8–29.1 | 619.5–1068.3 | 273.8–384.6 | 325.7–467.1 | |
Hinoki cypress * | 21 | 14.6–34.3 | 9.6–21.4 | 106.6–555.7 | 98.8–281.0 | 110.4–444.9 |
Deciduous Broadleaved | 5 | 1.1–25.7 | 1.7–21.3 | 6.2–408.7 | 4.9–263.0 | 7.2–317.6 |
Observation Date | Contractor | Scanner, Manufacturer | Beam Divergence (mrad) | Wave-Length (nm) | Flight Altitude Above Ground (m) | Foot-Print Size (m) | FOV (°) | Beam Density (pulse m−2) | Usage |
---|---|---|---|---|---|---|---|---|---|
October 2003 | Kokusai Kogyo Co., Chiyoda, Tokyo, Japan | RAMS, EnerQuest, Denver, CO, USA | 0.33 | 1064 | 2000 (Entire Gifu Prefecture) | - | ±22 | 0.7 | DTM production |
25 July 2005 | Nakanihon Air Service Co., Nagoya, Aichi, Japan | ALTM 2050DC, Optech, Vaughan, Ontario, Canada | 0.19 | 1064 | 1200 | 0.24 | ±22 | 1.8 | DTM production |
28 August 2011 | Nakanihon Air Service Co. | VQ-580 RIEGL, Horn, Horn, Austria | 0.50 | 1064 | 600 | 0.30 | ±30 | 1.0 | Biomass estimation, DTM production |
Target Points | Variables | |||||
---|---|---|---|---|---|---|
All points | Average height | Standard deviation | Coefficient of variance | Maximum height | Canopy closure | |
Points other than ground | Average height | Standard deviation | Coefficient of variance | |||
Points within canopy part | Average height | Standard deviation | Coefficient of variance | Height at every 10th percentiles | Height at every 10th part | Canopy closure at every 10th part |
LiDAR | Volume (m3 ha−1) | AGB (Mg ha−1) | TDB (Mg ha−1) | Score * |
---|---|---|---|---|
Hd4 | 0.871 | 0.915 | 0.915 | 6 |
Hd5 | 0.876 | 0.912 | 0.912 | 8 |
Hd6 | 0.874 | 0.904 | 0.903 | 7 |
AHavr | 0.894 | 0.915 | 0.913 | 18 |
H40% | 0.886 | 0.900 | 0.896 | 7 |
LiDAR | Volume (m3 ha−1) | AGB (Mg ha−1) | TDB (Mg ha−1) | Score * |
---|---|---|---|---|
Hd4 | 0.912 | 0.854 | 0.852 | 16 |
Hd5 | 0.912 | 0.856 | 0.854 | 14 |
Hd6 | 0.909 | 0.857 | 0.854 | 13 |
AHavr | 0.907 | 0.843 | 0.840 | 0 |
H40% | 0.904 | 0.839 | 0.836 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awaya, Y.; Takahashi, T. Evaluating the Differences in Modeling Biophysical Attributes between Deciduous Broadleaved and Evergreen Conifer Forests Using Low-Density Small-Footprint LiDAR Data. Remote Sens. 2017, 9, 572. https://doi.org/10.3390/rs9060572
Awaya Y, Takahashi T. Evaluating the Differences in Modeling Biophysical Attributes between Deciduous Broadleaved and Evergreen Conifer Forests Using Low-Density Small-Footprint LiDAR Data. Remote Sensing. 2017; 9(6):572. https://doi.org/10.3390/rs9060572
Chicago/Turabian StyleAwaya, Yoshio, and Tomoaki Takahashi. 2017. "Evaluating the Differences in Modeling Biophysical Attributes between Deciduous Broadleaved and Evergreen Conifer Forests Using Low-Density Small-Footprint LiDAR Data" Remote Sensing 9, no. 6: 572. https://doi.org/10.3390/rs9060572
APA StyleAwaya, Y., & Takahashi, T. (2017). Evaluating the Differences in Modeling Biophysical Attributes between Deciduous Broadleaved and Evergreen Conifer Forests Using Low-Density Small-Footprint LiDAR Data. Remote Sensing, 9(6), 572. https://doi.org/10.3390/rs9060572