Modeling and Partitioning of Regional Evapotranspiration Using a Satellite-Driven Water-Carbon Coupling Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Site Information
2.3. Data
2.4. Parameterization
2.5. Model Performance and Sensitivity Analysis
3. Results
3.1. Parameterization and Model Sensitivity
3.2. Model Performance
3.3. Regional GPP, ET, WUE and E/ET in China
4. Discussion
4.1. Parameters of the SWH Model
4.2. Reliability and Merits of the SWH Model
4.3. Uncertainties of the SWH Model
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BESS | Breathing Earth System Simulator |
Biome-BGC | Biome-Biogeochemical |
CLM | Community Land Model |
DBF | Deciduous broadleaf forest sites |
E | Soil evaporation (mm·day−1) |
EBF | Evergreen broadleaf forest sites |
ENF | Evergreen needleleaf forest sites |
ET | Evapotranspiration (mm·day−1) |
FPAR | Fraction of PAR absorbed by the canopy |
GPP | Gross primary productivity (g·C·m−2·day−1) |
LAI | Leaf Area Index |
MF | Mixed forest sites |
NDVI | Normalized Difference Vegetation Index |
NEE | Net ecosystem exchange |
ORNL DAAC | Oak Ridge National Laboratory Distributed Active Archive Center |
PAR | Photo-synthetically active radiation (mol·m−2·s−1) |
P-M | Penman-Monteith |
PPFD | photosynthetic photon flux density |
RS-PM | Remote Sensing Penman Monteith |
RH | Relative humidity (%) |
S-W | Shuttleworth-Wallace |
SWC | Soil water content (%) |
T | Plant transpiration (mm·day−1) |
VPD | Vapor pressure deficit (kPa) |
WS | Wind speed (m/s) |
WUE | Ecosystem water-use efficiency (g·C·kg−1·H2O) |
CS | Leaf surface CO2 content |
d | Effective soil depth |
G | Soil heat flux (W·m−2) |
hs | Leaf surface relative humidity |
Pn | Photosynthetic rate (µmol·m−2·s−1) |
raa | Aerodynamic resistance between canopy source height and reference level (s·m−1) |
rac | Bulk boundary layer resistance of the vegetative elements in the canopy (s·m−1) |
ras | Aerodynamic resistance between the substrate and canopy source height (s·m−1) |
Re | Ecosystem respiration |
Rn | Net radiation flux into the complete crop (W·m−2) |
Rns | Net radiation flux into the substrate (W·m−2) |
rsc | Bulk stornatal resistance of the canopy (s·m−1) |
rss | Surface resistance of the substrate (s·m−l) |
Ta | Average temperature of the surface (°C) |
Tmax | The minimum air temperatures (°C) |
Tmin | The minimum air temperatures (°C) |
Topt | The optimum air temperatures (°C) |
ε | Light-use efficiency (µmol·CO2·µmol−1 PPFD) |
εmax | Apparent quantum yield or maximum light-use efficiency (µmol·CO2·µmol−1 PPFD) |
λ | Light extinction coefficient |
Appendix A. Full Description of the SWH Model
Appendix A.1. General Logic
Appendix A.2. Calculation of Resistances
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatt, A.; Chen, J.Q.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Wang, C.; Bond-Lamberty, B.; Gower, S.T. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Glob. Chang. Biol. 2003, 9, 1066–1079. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, J.; Liang, S.; Feng, J.; Fisher, J.B.; Li, X.; Li, X.; Liu, S.; Ma, Z.; Miyata, A. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 2014, 140, 279–293. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Gao, X.; Zhao, M.; Guo, Z.; Oki, T.; Hanasaki, N. GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 2006, 87, 1381–1397. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from Sparse Crops—An energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Stannard, D.I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified priestley-taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resour. Res. 1993, 29, 1379–1392. [Google Scholar] [CrossRef]
- Tourula, T.; Heikinheimo, M. Modelling evapotranspiration from a barley field over the growing season. Agric. For. Meteorol. 1998, 91, 237–250. [Google Scholar] [CrossRef]
- Iritz, Z.; Lindroth, A.; Heikinheimo, M.; Grelle, A.; Kellner, E. Test of a modified Shuttleworth–Wallace estimate of boreal forest evaporation. Agric. For. Meteorol. 1999, 98, 605–619. [Google Scholar] [CrossRef]
- Kato, T.; Kimura, R.; Kamichika, M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model. Agric. Water Manag. 2004, 65, 173–191. [Google Scholar] [CrossRef]
- Hu, Z.M.; Yu, G.R.; Zhou, Y.L.; Sun, X.M.; Li, Y.N.; Shi, P.L.; Wang, Y.F.; Song, X.; Zheng, Z.M.; Zhang, L.; et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agric. For. Meteorol. 2009, 149, 1410–1420. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.Z.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Poblete-Echeverria, C.; Brisson, N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric. For. Meteorol. 2010, 150, 276–286. [Google Scholar] [CrossRef]
- Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.H.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 1998, 18, 311–346. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008. [Google Scholar] [CrossRef]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 221–224. [Google Scholar]
- Hu, Z.M.; Li, S.G.; Yu, G.R.; Sun, X.M.; Zhang, L.M.; Han, S.J.; Li, Y.N. Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model. J. Hydrol. 2013, 501, 186–192. [Google Scholar] [CrossRef]
- Lin, J.; Sun, S. Moisture and heat flow in soil and theirs effects on bare soil evaporation. Trans. Water Conserv. 1983, 7, 1–7. [Google Scholar]
- Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.; Falge, E.; Ellsworth, D.S.; Golstein, A.H.; Monson, R.K.; Hollinger, D.; Falk, M.; et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 2002, 113, 185–222. [Google Scholar] [CrossRef]
- Sims, D.A.; Luo, H.Y.; Hastings, S.; Oechel, W.C.; Rahman, A.F.; Gamon, J.A. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sens. Environ. 2006, 103, 289–303. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815–835. [Google Scholar] [CrossRef]
- Yuan, W.P.; Liu, S.; Zhou, G.S.; Zhou, G.Y.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Zhang, L.X.; Zhou, D.C.; Fan, J.W.; Hu, Z.M. Comparison of four light use efficiency models for estimating terrestrial gross primary production. Ecol. Model. 2015, 300, 30–39. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Z.; Fan, J.; Zhou, D.; Tang, F. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Front. Earth Sci. 2014, 8, 599–609. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL)—2. Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Yu, G.R.; Zhu, X.J.; Fu, Y.L.; He, H.L.; Wang, Q.F.; Wen, X.F.; Li, X.R.; Zhang, L.M.; Zhang, L.; Su, W. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.F.; Xu, T. ANUSPLIN Version 4.4 User Guide; The Australian National University: Canberra, Australia, 2013. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Angstrom, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Zhu, X.; He, H.; Liu, M.; Yu, G.; Sun, X.; Gao, Y. Spatio-temporal variation of photosynthetically active radiation in China in recent 50 years. J. Geogr. Sci. 2010, 20, 803–817. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Pappas, C.; Fatichi, S.; Leuzinger, S.; Wolf, A.; Burlando, P. Sensitivity analysis of a process-based ecosystem model: Pinpointing parameterization and structural issues. J. Geophys. Res. Biogeosci. 2013, 118, 505–528. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, G.R.; Gu, F.X.; He, H.L.; Zhang, L.M.; Han, S.J. Uncertainty analysis of modeled carbon fluxes for a broad-leaved Korean pine mixed forest using a process-based ecosystem model. J. For. Res. 2012, 17, 268–282. [Google Scholar] [CrossRef]
- Oleson, K.W.; Lawrence, D.M.; Gordon, B.; Flanner, M.G.; Kluzek, E.; Peter, J.; Levis, S.; Swenson, S.C.; Thornton, E.; Feddema, J. Technical Description of Version 4.0 of the Community Land Model (CLM); NCAR: Boulder, CO, USA, 2010. [Google Scholar]
- Kergoat, L.; Lafont, S.; Arneth, A.; Le Dantec, V.; Saugier, B. Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. J. Geophys. Res. Biogeosci. 2008. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Papale, D.; Ardö, J.; Goulden, M.L.; Kiely, G.; Richardson, A.D.; Rotenberg, E.; Veenendaal, E.M.; Filella, I. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob. Ecol. Biogeogr. 2010, 19, 253–267. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Liu, S.; Dong, W.; Chen, J.; Arain, M.A.; Blanken, P.D.; Cescatti, A.; Wohlfahrt, G.; Georgiadis, T.; et al. Vegetation-specific model parameters are not required for estimating gross primary production. Ecol. Model. 2014, 292, 1–10. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010. [Google Scholar] [CrossRef]
- Ryu, Y.; Baldocchi, D.D.; Kobayashi, H.; van Ingen, C.; Li, J.; Black, T.A.; Beringer, J.; van Gorsel, E.; Knohl, A.; Law, B.E.; et al. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 2011. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Meynadier, R.; Sheffield, J.; Wood, E.F. Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Process. 2011, 25, 3993–4010. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm. Agric. For. Meteorol. 2013, 171, 187–202. [Google Scholar] [CrossRef]
- Cai, W.; Yuan, W.; Liang, S.; Zhang, X.; Dong, W.; Xia, J.; Fu, Y.; Chen, Y.; Liu, D.; Zhang, Q. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. J. Geophys. Res. Biogeosci. 2014. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189, 115–117. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; Wang, Q.F.; Hu, Z.M.; Han, S.J.; Yan, J.H.; Wang, Y.F.; Zhao, L. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China. J. For. Res. 2014, 19, 70–76. [Google Scholar] [CrossRef]
- Hu, Z.M.; Yu, G.R.; Fu, Y.L.; Sun, X.M.; Li, Y.N.; Shi, P.L.; Wangw, Y.F.; Zheng, Z.M. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob. Chang. Biol. 2008, 14, 1609–1619. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012. [Google Scholar] [CrossRef]
- Yang, Y.; Long, D.; Shang, S. Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophys. Res. Lett. 2013, 40, 3026–3030. [Google Scholar] [CrossRef]
- He, M.; Ju, W.; Zhou, Y.; Chen, J.; He, H.; Wang, S.; Wang, H.; Guan, D.; Yan, J.; Li, Y. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Donohue, R.J.; Hume, I.; Roderick, M.; McVicar, T.R.; Beringer, J.; Hutley, L.; Gallant, J.C.; Austin, J.; van Gorsel, E.; Cleverly, J. Evaluation of the remote-sensing-based DIFFUSE model for estimating photosynthesis of vegetation. Remote Sens. Environ. 2014, 155, 349–365. [Google Scholar] [CrossRef]
- Lhomme, J.-P.; Chehbouni, A. Comments on dual-source vegetation-atmosphere transfer models. Agric. For. Meteorol. 1999, 94, 269–273. [Google Scholar] [CrossRef]
Biome | b2 | b3 (s·m−1) | a1 | g0 (mol·m−2·s−1) | εmax (mg CO2 μmol−1 PPFD) | d (mm) |
---|---|---|---|---|---|---|
Cropland | 3.8 (0.7) | 643 (234) | 7.5 (3.8) | 0.028 (0.025) | 0.0022 (0.0003) | 303 (95) |
Forest | 3.5 (0.8) | 724 (215) | 9.0 (5.4) | 0.005 (0.004) | 0.0011 (0.0003) | 244 (110) |
Grassland * | 3.4 (0.9) | 508 (279) | 10.3 (4.2) | 0.017 (0.021) | 0.0012 (0.0005) | 188 (95) |
Biome | NDVI | SWC | b2 | b3 | a1 | g0 | εmax | d |
---|---|---|---|---|---|---|---|---|
Cropland | 3.0 | 0.4 | 0.5 | 0.5 | 2.2 | 1.0 | 2.2 | 0.2 |
Forest | 5.1 | 0.5 | 0.8 | 1.3 | 4.2 | 1.3 | 4.2 | 0.2 |
Grassland | 3.6 | 1.7 | 2.5 | 1.1 | 2.5 | 1.8 | 2.5 | 0.3 |
PFT | Site ID | R2_ET | RMSE_ET | R2_GPP | RMSE_GPP | R2_MODIS | RMSE_MODIS |
---|---|---|---|---|---|---|---|
Cropland | NL-Lan | 0.82 | 0.56 | 0.72 | 3.40 | 0.79 | 0.51 |
NL-Lut | 0.55 | 1.11 | 0.50 | 4.86 | 0.50 | 0.79 | |
US-Blo | 0.86 | 0.66 | 0.49 | 1.64 | 0.10 | 1.46 | |
US-Ne1 | 0.92 | 0.51 | 0.82 | 3.31 | 0.82 | 0.86 | |
US-Ne2 | 0.85 | 0.69 | 0.69 | 4.35 | 0.80 | 0.86 | |
US-Ne3 | 0.88 | 0.60 | 0.83 | 2.96 | 0.84 | 0.63 | |
YC | 0.55 | 0.82 | 0.65 | 2.42 | 0.40 | 0.88 | |
Average | 0.78 | 0.71 | 0.67 | 3.28 | 0.61 | 0.85 | |
Grassland | IT-Amp | 0.77 | 0.60 | 0.41 | 2.18 | 0.58 | 0.68 |
NL-Ca1 | 0.88 | 0.41 | 0.77 | 1.47 | 0.79 | 0.46 | |
NL-Hor | 0.94 | 1.16 | 0.91 | 1.79 | 0.60 | 1.55 | |
US-Aud | 0.60 | 0.61 | 0.55 | 1.13 | 0.51 | 0.58 | |
US-Bo1 | 0.72 | 0.83 | 0.59 | 4.04 | 0.62 | 0.73 | |
US-FPe | 0.60 | 0.81 | 0.34 | 1.35 | 0.32 | 1.02 | |
US-Goo | 0.66 | 0.98 | 0.64 | 2.12 | 0.50 | 0.83 | |
US-Var | 0.30 | 0.92 | 0.35 | 2.39 | 0.74 | 0.59 | |
DX | 0.69 | 1.16 | 0.86 | 0.39 | 0.66 | 0.99 | |
GCT | 0.82 | 0.91 | 0.94 | 0.53 | 0.76 | 0.66 | |
NM | 0.51 | 0.69 | 0.73 | 1.07 | 0.41 | 1.38 | |
Average | 0.68 | 0.83 | 0.64 | 1.68 | 0.59 | 0.86 | |
Savanna | AU-How | 0.67 | 0.90 | 0.57 | 1.79 | 0.66 | 0.92 |
BW-Ghg | 0.97 | 0.88 | 0.93 | 1.42 | 0.74 | 0.49 | |
BW-Ghm | 0.90 | 0.87 | 0.62 | 2.09 | 0.89 | 0.72 | |
BW-Ma1 | 0.79 | 0.59 | 0.79 | 0.79 | 0.78 | 1.10 | |
US-Ton | 0.69 | 0.66 | 0.77 | 0.89 | 0.65 | 0.89 | |
Average | 0.80 | 0.78 | 0.74 | 1.40 | 0.74 | 0.82 | |
Wetland | CA-Mer | 0.87 | 0.73 | 0.89 | 2.28 | 0.66 | 1.60 |
SE-Faj | 0.72 | 0.40 | 0.48 | 2.12 | 0.19 | 0.73 | |
SD | 0.69 | 1.58 | 0.90 | 0.62 | 0.60 | 1.17 | |
Average | 0.76 | 0.90 | 0.76 | 1.67 | 0.48 | 1.17 | |
Shrubland | CA-NS6 | 0.86 | 0.73 | 0.87 | 1.22 | 0.78 | 0.65 |
CA-NS7 | 0.81 | 0.80 | 0.69 | 1.60 | 0.73 | 1.17 | |
CA-SF3 | 0.73 | 0.49 | 0.84 | 1.28 | 0.84 | 0.86 | |
Average | 0.80 | 0.67 | 0.80 | 1.37 | 0.78 | 0.89 | |
DBF | IT-Ro1 | 0.75 | 0.98 | 0.66 | 2.28 | 0.69 | 1.05 |
IT-Ro2 | 0.83 | 0.75 | 0.77 | 2.35 | 0.69 | 0.75 | |
US-Bar | 0.91 | 0.68 | 0.90 | 1.28 | 0.90 | 0.52 | |
US-Ha1 | 0.57 | 0.79 | 0.86 | 2.16 | 0.51 | 0.71 | |
US-MMS | 0.89 | 0.50 | 0.78 | 1.94 | 0.80 | 0.72 | |
US-UMB | 0.93 | 0.47 | 0.94 | 1.07 | 0.90 | 0.52 | |
US-WCr | 0.84 | 0.48 | 0.87 | 2.02 | 0.70 | 0.67 | |
Average | 0.82 | 0.66 | 0.83 | 1.87 | 0.74 | 0.71 | |
EBF | AU-Tum | 0.85 | 0.84 | 0.78 | 2.43 | 0.55 | 1.07 |
AU-Wac | 0.80 | 0.52 | 0.47 | 2.18 | 0.30 | 0.90 | |
ID-Pag | 0.53 | 0.58 | 0.23 | 2.13 | 0.08 | 1.45 | |
IT-Cpz | 0.74 | 1.16 | 0.48 | 2.89 | 0.46 | 1.08 | |
DHS | 0.59 | 0.67 | 0.60 | 1.07 | 0.43 | 0.62 | |
Average | 0.70 | 0.75 | 0.51 | 2.14 | 0.36 | 1.02 | |
ENF | CA-Man | 0.83 | 0.44 | 0.91 | 1.12 | 0.67 | 0.42 |
CA-NS1 | 0.88 | 0.50 | 0.85 | 1.60 | 0.74 | 0.37 | |
CA-NS2 | 0.88 | 0.51 | 0.38 | 2.10 | 0.69 | 0.38 | |
CA-NS3 | 0.80 | 0.40 | 0.87 | 1.04 | 0.48 | 0.51 | |
CA-NS4 | 0.90 | 0.61 | 0.90 | 1.78 | 0.49 | 0.38 | |
CA-NS5 | 0.89 | 0.34 | 0.90 | 1.16 | 0.84 | 0.63 | |
CA-Qcu | 0.82 | 0.42 | 0.84 | 1.73 | 0.81 | 0.43 | |
CA-Qfo | 0.84 | 0.37 | 0.87 | 0.87 | 0.85 | 0.28 | |
CA-SF1 | 0.73 | 0.84 | 0.84 | 1.06 | 0.79 | 0.88 | |
CA-SF2 | 0.74 | 0.82 | 0.58 | 2.41 | 0.81 | 0.51 | |
DE-Tha | 0.75 | 0.60 | 0.87 | 2.73 | 0.63 | 0.98 | |
FI-Hyy | 0.89 | 0.32 | 0.94 | 1.09 | 0.88 | 0.31 | |
NL-Loo | 0.63 | 0.72 | 0.89 | 1.83 | 0.51 | 0.75 | |
SE-Sk2 | 0.88 | 1.58 | 0.97 | 2.95 | 0.81 | 2.91 | |
SE-Fla | 0.69 | 0.63 | 0.87 | 0.96 | 0.62 | 0.42 | |
US-Bkg | 0.81 | 1.28 | 0.48 | 1.99 | 0.77 | 1.22 | |
US-Ho1 | 0.89 | 0.47 | 0.95 | 1.42 | 0.80 | 0.76 | |
US-Me4 | 0.82 | 0.48 | 0.71 | 1.66 | 0.81 | 0.54 | |
QYZ | 0.67 | 0.78 | 0.52 | 2.39 | 0.53 | 0.77 | |
Average | 0.81 | 0.64 | 0.80 | 1.68 | 0.71 | 0.71 | |
MF | US-PFa | 0.72 | 0.79 | 0.71 | 1.81 | 0.17 | 1.19 |
US-Syv | 0.88 | 0.53 | 0.92 | 1.13 | 0.80 | 0.49 | |
CBS | 0.87 | 0.46 | 0.95 | 1.78 | 0.68 | 0.69 | |
Average | 0.82 | 0.59 | 0.86 | 1.58 | 0.55 | 0.79 |
Model | Type | Complexity | ET Partitioning | GPP Simulation | Reference |
---|---|---|---|---|---|
PML | Empirical | low | √ | Leuning et al. (2008) [20] | |
PT-Fi | Empirical | low | √ | Fisher et al. (2008) [3] | |
Regression model | Empirical | Low | Wang et al. (2010) [55] | ||
Model tree ensemble | Empirical | high | Jung et al. (2010) [2] | ||
Yang’s model | Empirical | low | Yang et al. (2013) [56] | ||
EC-LUE | process | middle | √ | Yuan et al. (2010) [46] | |
MODIS ET | process | middle | √ | Mu et al. (2011) [17] | |
RS-PM | process | low | Cleugh et al. (2007) [15] | ||
PM_zhang | process | low | Zhang et al. (2010) [47] | ||
BESS | process | high | √ | Ryu et al. (2011) [48] | |
SWH | process | middle | √ | √ | This study |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Wu, G.; Zhang, L.; Li, S.; Zhu, X.; Zheng, H.; Zhang, L.; Sun, X.; Yu, G. Modeling and Partitioning of Regional Evapotranspiration Using a Satellite-Driven Water-Carbon Coupling Model. Remote Sens. 2017, 9, 54. https://doi.org/10.3390/rs9010054
Hu Z, Wu G, Zhang L, Li S, Zhu X, Zheng H, Zhang L, Sun X, Yu G. Modeling and Partitioning of Regional Evapotranspiration Using a Satellite-Driven Water-Carbon Coupling Model. Remote Sensing. 2017; 9(1):54. https://doi.org/10.3390/rs9010054
Chicago/Turabian StyleHu, Zhongmin, Genan Wu, Liangxia Zhang, Shenggong Li, Xianjin Zhu, Han Zheng, Leiming Zhang, Xiaomin Sun, and Guirui Yu. 2017. "Modeling and Partitioning of Regional Evapotranspiration Using a Satellite-Driven Water-Carbon Coupling Model" Remote Sensing 9, no. 1: 54. https://doi.org/10.3390/rs9010054
APA StyleHu, Z., Wu, G., Zhang, L., Li, S., Zhu, X., Zheng, H., Zhang, L., Sun, X., & Yu, G. (2017). Modeling and Partitioning of Regional Evapotranspiration Using a Satellite-Driven Water-Carbon Coupling Model. Remote Sensing, 9(1), 54. https://doi.org/10.3390/rs9010054