Comparison of SEVIRI-Derived Cloud Occurrence Frequency and Cloud-Top Height with A-Train Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. CPR/CloudSat
2.1.2. CALIOP/CALIPSO
2.2. Methodology
2.2.1. Data Period
2.2.2. Matching SEVIRI and A-Train Observations
2.2.3. Validation Methods and Scores
3. Results
3.1. Cloud Occurrence Frequency
3.2. Cloud-Top Height
4. Discussion
4.1. Cloud Occurrence Frequency
4.2. Cloud-Top Height
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change. The Scientific Bases: Contribution of Working Group I to the Third Assessment Report of the International Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Liou, K.M. Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Weather Rev. 1986, 114, 1167–1198. [Google Scholar] [CrossRef]
- Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P.N.; Heidinger, A.; Joro, S.; Kniffka, A.; et al. Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmos. Meas. Tech. 2014, 7, 2839–2867. [Google Scholar] [CrossRef]
- Saunders, R.W.; Francis, R.; Francis, P.N.; Crawford, J.; Smith, A.; Brown, I.; Taylor, R.; Forsythe, M.; Doutriaux-Boucher, M.; Millington, S. The exploitation of Meteosat Second Generation data in the Met Office. In Proceedings of the 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland, 12–16 June 2006.
- Wolters, E.L.A.; Roebeling, R.A.; Feijt, A.J. Evaluation of cloud-phase retrieval methods for SEVIRI on Meteosat-8 using ground-based lidar and cloud radar data. J. Appl. Meteorol. Clim. 2008, 47, 1723–1738. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Hogan, R.J.; O’Connor, E.J.; Bouniol, D.; Brooks, M.E.; Delanoe, J.; Donovan, D.P.; Eastment, J.D.; Gaussiat, N.; Goddard, J.W.F.; et al. Cloudnet—Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Am. Meteorol. Soc. 2007, 88, 883–898. [Google Scholar] [CrossRef]
- Vanbauce, C.; Cadet, B.; Marchand, R.T. Comparison of POLDER apparent and corrected oxygen pressure to ARM/MMCR cloud boundary pressures. Geophys. Res. Lett. 2003, 30, 1212. [Google Scholar] [CrossRef]
- Bennartz, R.; Fell, F.; Walther, A. AVAC-S: A-Train Validation of Aerosol and Cloud Properties from SEVIRI; EUMETSAT Document EUM-07-839-INF; EUMETSAT: Darmstadt, Germany, 2010. [Google Scholar]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Saunders, R.W.; Matricardi, M.; Brunel, P. An improved fast radiative model for assimilation of satellite radiance observations. Q. J. R. Meteor. Soc. 1999, 125, 1407–1425. [Google Scholar] [CrossRef]
- Hocking, J.; Francis, P.N.; Saunders, R.W. Cloud detection in Meteosat Second Generation imagery at the Met Office. Meteorol. Appl. 2011, 18, 307–323. [Google Scholar] [CrossRef]
- Eyre, J.R.; Menzel, W.P. Retrieval of cloud parameters from satellite sounder data: A simulation study. J. Appl. Meteorol. 1989, 28, 267–275. [Google Scholar] [CrossRef]
- Moseley, S. Changes to the Nimrod Cloud Top Height Diagnosis; Met Office Forecasting Research Technical Report No. 424; Met Office: Exeter, Devon, UK, 2003.
- Francis, P.N.; Hocking, J.A.; Saunders, R.W. Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models. In Proceedings of the 2008 EUMETSAT Meteorological Satellite Conference, Darmstadt, Germany, 8–12 September 2008.
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.G.; Austin, R.; et al. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. 2008, 113, D00A18. [Google Scholar] [CrossRef]
- Wang, Z.; Sassen, K. Level 2 Cloud Scenario Classification Product Process Description and Interface Control Document; Version 5.0; Cooperative Institute for Research in the Atmosphere, Colorado State University: Fort Collins, CO, USA, 2007; Available online: http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CLDCLASS_PDICD.P_R04.20070724.pdf (accessed on 30 January 2016).
- Marchand, R.; Mace, G.G.; Ackerman, T.; Stephens, G. Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz Cloud Radar. J. Atmos. Ocean. Tech. 2008, 25, 519–533. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; Hostetler, C.A. Status and Performance of the CALIOP Lidar. In Proceedings of the SPIE 5575 Laser Radar Techniques for Atmospheric Sounding, Canary Islands, Spain, 4 November 2004.
- Nayak, M.; Witkowski, M.; Vane, D.; Livermore, T.; Rokey, M.; Barthuli, M.; Gravseth, I.J.; Pieper, B.; Rodzinak, A.; Silva, S.; et al. CloudSat Anomaly Recovery and Operational Lessons Learned. In Proceedings of the 12th International Conference SpaceOps, Stockholm, Sweden, 11–15 June 2012.
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Elsevier: New York, NY, USA, 2006; pp. 260–269. [Google Scholar]
- Menzel, W.P.; Frey, R.; Baum, B. Cloud Top Properties and Cloud Phase Algorithm Theoretical Basis Document; MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-06, Version 8; NASA: Greenbelt, MD, USA, 2010. Available online: http://modis-atmos.gsfc.nasa.gov/_docs/CTP_ATBD_oct10.pdf (accessed on 23 March 2016).
- Hewison, T.; Muller, J. Ice Contamination of Meteosat/SEVIRI Implied by Inter-Calibration against Metop/IASI. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1182–1186. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Ockert-Bell, M.E.; Michelsen, M.L. The effect of cloud type on the earth’s energy balance: Global analysis. J. Clim. Appl. Meteorol. 1992, 8, 1–16. [Google Scholar] [CrossRef]
- Wang, P.H.; Minnis, P.; McCormick, M.P.; Kent, G.S.; Skeens, K.M. A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res. 1996, 101, 29407–29429. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P. Two years of cloud cover statistics using VAS. J. Clim. 1989, 2, 380–392. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P.; Woolf, H.M.; Strabala, K.I. Four years of global cirrus cloud statistics using HIRS. J. Clim. 1994, 7, 1972–1986. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P. Eight years of High cloud statistics using HIRS. J. Clim. 1999, 12, 170–184. [Google Scholar] [CrossRef]
- Weisz, E.; Li, J.; Menzel, W.P.; Heidinger, A.K.; Kahn, B.H.; Liu, C.Y. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett. 2007, 34, L17811. [Google Scholar] [CrossRef]
- Holz, R.; Ackerman, S.; Nagel, F.; Frey, R.; Dutcher, S.; Kuehn, R.; Vaughan, M.; Baum, B. Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res. 2008, 113, D00A19. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Heidinger, A.K. Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteorol. 2004, 43, 762–778. [Google Scholar] [CrossRef]
- Minnis, P.; Huang, J.; Lin, B.; Yi, Y.; Arduini, R.F.; Fan, T.F.; Ayers, J.K.; Mace, G.G. Ice cloud properties in ice-over-water cloud systems using Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and TRMM microwave Imager data. J. Geophys. Res. 2007, 112, D06206. [Google Scholar] [CrossRef]
- Watts, P.; Bennartz, R.; Fell, F. Retrieval of two-layer cloud properties from multispectral observations using optimal estimation. J. Geophys. Res. 2011, 116, D16203. [Google Scholar] [CrossRef]
SEVIRI Cloudy | SEVIRI Clear | |
---|---|---|
Reference cloudy (CPR or CALIOP) | a: hits | b: misses |
Reference clear (CPR or CALIOP) | c: false positives | d: correct negatives |
Year | Month | Mean Cloud Occurrence (%) | SEVIRI Bias (%) | Number of Data | |||
---|---|---|---|---|---|---|---|
CPR | CALIOP | SEVIRI | CPR | CALIOP | |||
2013 | May | 43.39 | 61.70 | 57.32 | 13.93 | −4.38 | 68162 |
June | 38.85 | 57.31 | 53.25 | 14.40 | −4.06 | 59384 | |
July | 37.01 | 53.20 | 51.39 | 14.38 | −1.81 | 77620 | |
August | 40.67 | 58.13 | 56.56 | 15.89 | −1.57 | 82891 | |
September | 40.69 | 58.76 | 55.68 | 14.99 | −3.08 | 72390 | |
October | 42.16 | 61.85 | 57.36 | 15.20 | −4.49 | 67751 | |
November | 44.14 | 61.93 | 58.46 | 14.32 | −3.47 | 82263 | |
December | 45.12 | 66.19 | 60.51 | 15.39 | −5.68 | 97163 | |
2014 | January | 55.40 | 64.16 | 64.01 | 8.61 | −0.15 | 8466 |
February | 52.64 | 66.95 | 57.56 | 4.92 | −9.39 | 11934 | |
March | 45.94 | 64.35 | 60.21 | 14.27 | −4.14 | 80800 | |
April | 46.04 | 64.36 | 59.13 | 13.09 | −5.23 | 107137 | |
Overall mean | 42.98 | 61.23 | 57.33 | 14.35 | −3.90 | 815961 |
Surface Type | Mean Cloud Coverage (%) | SEVIRI Bias (%) | Number of Data | |||
---|---|---|---|---|---|---|
CPR | CALIOP | SEVIRI | CPR | CALIOP | ||
All | 42.98 | 61.23 | 57.33 | 14.35 | −3.90 | 815961 |
Land | 35.67 | 56.87 | 44.74 | 9.07 | −12.14 | 291108 |
Ocean | 47.03 | 63.65 | 64.32 | 17.28 | 0.67 | 524853 |
Reference Data | Surface Type | PODcloudy | PODclear | FARcloudy | FARclear | PC | KSS | Number of Data |
---|---|---|---|---|---|---|---|---|
CPR | All | 0.9019 | 0.6743 | 0.3239 | 0.0988 | 0.7722 | 0.5763 | 815961 |
Land | 0.8340 | 0.7669 | 0.3351 | 0.1072 | 0.7909 | 0.6009 | 291108 | |
Ocean | 0.9305 | 0.6120 | 0.3196 | 0.0916 | 0.7618 | 0.5425 | 524853 | |
CALIOP | All | 0.8231 | 0.8213 | 0.1209 | 0.2538 | 0.8224 | 0.6444 | 815961 |
Land | 0.7147 | 0.9051 | 0.0914 | 0.2936 | 0.7968 | 0.6199 | 291108 | |
Ocean | 0.8769 | 0.7661 | 0.1322 | 0.2196 | 0.8366 | 0.6430 | 524853 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, C.-Y.; Francis, P.N.; Saunders, R.W.; Kim, J. Comparison of SEVIRI-Derived Cloud Occurrence Frequency and Cloud-Top Height with A-Train Data. Remote Sens. 2017, 9, 24. https://doi.org/10.3390/rs9010024
Chung C-Y, Francis PN, Saunders RW, Kim J. Comparison of SEVIRI-Derived Cloud Occurrence Frequency and Cloud-Top Height with A-Train Data. Remote Sensing. 2017; 9(1):24. https://doi.org/10.3390/rs9010024
Chicago/Turabian StyleChung, Chu-Yong, Peter N. Francis, Roger W. Saunders, and Jhoon Kim. 2017. "Comparison of SEVIRI-Derived Cloud Occurrence Frequency and Cloud-Top Height with A-Train Data" Remote Sensing 9, no. 1: 24. https://doi.org/10.3390/rs9010024
APA StyleChung, C.-Y., Francis, P. N., Saunders, R. W., & Kim, J. (2017). Comparison of SEVIRI-Derived Cloud Occurrence Frequency and Cloud-Top Height with A-Train Data. Remote Sensing, 9(1), 24. https://doi.org/10.3390/rs9010024