Improving the Downscaling of Diurnal Land Surface Temperatures Using the Annual Cycle Parameters as Disaggregation Kernels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite LST Imagery
2.2.2. LST Predictors
2.3. Method
2.3.1. Research Objective and Experimental Setup
2.3.2. Employed LST Downscaling Method
3. Results
3.1. Statistical Comparison of the Downscaled Data with the Reference Data
3.2. Analysis of the Spatial Patterns and the Impact of Land Cover and Altitude
3.3. Similarity of the Employed MODIS LST and SEVIRI DLST Time Series
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ACPs | Annual Cycle Parameters |
AVHRR | Advanced Very High Resolution Radiometer |
BRDF | Bidirectional Reflectance Distribution Function |
CC | Cloud Cover |
DLST | Downscaled Land Surface Temperature |
DOYs | Days-of-Year |
disTrad | Disaggregation Procedure for Radiometric Surface Temperature |
DN | Digital Numbers |
GOES | Geostationary Environmental Satellite |
LST | Land Surface Temperature |
NDVI | Normalized Difference Vegetation Index |
MAE | Mean Absolute Error |
MAST | Mean Annual Surface Temperature |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSG | Meteosat Second Generation |
RMSE | Root-Mean-Square-Error |
SD | Standard Deviation |
SEVIRI | Spinning Enhanced Visible and Infrared Imager |
SRTM | Shuttle Radar Topography Mission |
SUHI | Surface Urban Heat Island |
SVM | Support Vector Regression Machine |
SWIR | Shortwave Infrared Radiation |
TIR | Thermal Infrared Radiation |
Rho | Pearson’s Correlation Coefficient |
VIs | Vegetation Indices |
VNIR | Visible and Near-Infrared Radiation |
VZA | View Zenith Angle |
WSA | White-Sky Albedo |
YAST | Yearly Amplitude of Surface Temperature |
ε12μm | 12 μm Emissivity |
References
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Agric. For. Meteorol. 1995, 77, 153–166. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Krishnan, P.; Kochendorfer, J.; Dumas, E.J.; Guillevic, P.C.; Bruce Baker, C.; Meyers, T.P.; Martos, B. Comparison of in-Situ, aircraft, and satellite land surface temperature measurements over a NOAA climate reference network site. Remote Sens. Environ. 2015, 165, 249–264. [Google Scholar] [CrossRef]
- Quattrochi, D.A.; Goel, N.S. Spatial and temporal scaling of thermal infrared remote sensing data. Remote Sens. Rev. 1995, 12, 255–286. [Google Scholar] [CrossRef]
- Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sens. Environ. 2009, 113, 2592–2605. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Li, J.; Liu, W. Sharpening thermal imageries: A generalized theoretical framework from an assimilation perspective. IEEE Trans. Geosci. Remote Sens. 2011, 49, 773–789. [Google Scholar] [CrossRef]
- Chen, Y.; Zhan, W.; Quan, J.; Zhou, J.; Zhu, X.; Sun, H. Disaggregation of Remotely sensed land surface temperature: A generalized paradigm. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5952–5965. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T.; Bechtel, B. Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Inamdar, A.K.; French, A. Disaggregation of GOES land surface temperatures using surface emissivity. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Inamdar, A.K.; French, A.; Hook, S.; Vaughan, G.; Luckett, W. Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. J. Geophys. Res. 2008, 113, 1–18. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 78–88. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Weng, Q. Downscaling geostationary land surface temperature imagery for urban analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1253–1257. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Duan, S.; Li, Z. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Jeganathan, C.; Hamm, N.A.S.; Mukherjee, S.; Atkinson, P.M.; Raju, P.L.N.; Dadhwal, V.K. Evaluating a thermal image sharpening model over a mixed agricultural landscape in India. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 178–191. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Van de Voorde, T.; Batelaan, O. Evaluation of the DisTrad thermal sharpening methodology for urban areas. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 163–172. [Google Scholar] [CrossRef]
- Merlin, O.; Duchemin, B.; Hagolle, O.; Jacob, F.; Coudert, B.; Chehbouni, G.; Dedieu, G.; Garatuza, J.; Kerr, Y. Disaggregation of MODIS surface temperature over an agricultural area using a time series of formosat-2 images. Remote Sens. Environ. 2010, 114, 2500–2512. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B. A new global climatology of annual land surface temperature. Remote Sens. 2015, 7, 2850–2870. [Google Scholar] [CrossRef]
- Bechtel, B. Robustness of annual cycle parameters to characterize the urban thermal landscapes. IEEE Geosci. Remote Sens. Lett. 2012, 9, 876–880. [Google Scholar] [CrossRef]
- Bechtel, B.; Böhner, J.; Zakšek, K.; Wiesner, S. Downscaling of diumal land surface temperature cycles for urban heat island monitoring. In Proceedings of the Joint Urban Remote Sensing Event, Sao Paolo, Brazil, 21–23 April 2013; pp. 8–11.
- Zhan, W.; Huang, F.; Quan, J.; Zhu, X.; Gao, L.; Zhou, J.; Ju, W. Disaggregation of remotely sensed land surface temperature: A new dynamic methodology. J. Geophys. Res. Atmos. 2016, 121, 1–17. [Google Scholar] [CrossRef]
- Wan, Z. Collection-5 MODIS Land Surface Temperature Products Users’ Guide; ICESS, University of California: Santa Barbara, CA, USA, 2006. [Google Scholar]
- Wan, Z.; Li, Z.-L. Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens. 2008, 29, 5373–5395. [Google Scholar] [CrossRef]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T. A satellite-based system for continuous monitoring of surface urban heat islands. Urban Clim. 2015, 14, 141–153. [Google Scholar] [CrossRef]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T. Evaluating the operational retrieval and downscaling of urban land surface temperatures. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1312–1316. [Google Scholar] [CrossRef]
- Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.-L.; Olesen, F.; Barroso, C.; Camacho-de-Coca, F.; Carrer, D.; Freitas, S.C.; García-Haro, J.; et al. The satellite application facility for land surface analysis. Int. J. Remote Sens. 2011, 32, 2725–2744. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Solano, R.; Didan, K.; Jacobson, A.; Huete, A. Collection-5 MODIS Vegetation Indices (MOD13) User’s Guide; Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2010. [Google Scholar]
- Strahler, A.H.; Muller, J.P. Collection-5 MODIS BRDF Albedo Product (MCD43): Algorithm Theoretical Basis Document; Boston University: Boston, MA, USA, 1999. [Google Scholar]
- Maeda, E.E. Downscaling MODIS LST in the east African mountains using elevation gradient and land-cover information. Int. J. Remote Sens. 2014, 35, 3094–3108. [Google Scholar] [CrossRef]
- Bisquert, M.; Sánchez, J.M.; Caselles, V. Evaluation of disaggregation methods for downscaling MODIS land surface temperature to Landsat spatial resolution in Barrax test site. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1430–1438. [Google Scholar] [CrossRef]
- Rodriguez, E.; Morris, C.C.; Belz, J.J. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.-Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib Desert, Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Pardo-Iguzquiza, E.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 515–527. [Google Scholar] [CrossRef]
- Holderness, T.; Barr, S.; Dawson, R.; Hall, J. An evaluation of thermal earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric. Int. J. Remote Sens. 2013, 34, 864–884. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Yu, Y.; Goldberg, M.D.; Tarpley, D.; Romanov, P.; Laszlo, I.; Chen, M. Angular anisotropy of satellite observations of land surface temperature. Geophys. Res. Lett. 2012, 39, 1–7. [Google Scholar] [CrossRef]
- Hu, L.; Monaghan, A.; Voogt, J.A.; Barlage, M. A first satellite-based observational assessment of urban thermal anisotropy. Remote Sens. Environ. 2016, 181, 111–121. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature. J. Geophys. Res. 2008, 113, D17108. [Google Scholar] [CrossRef]
- Mitraka, Z.; Chrysoulakis, N.; Kamarianakis, Y.; Partsinevelos, P.; Tsouchlaraki, A. Improving the estimation of urban surface emissivity based on sub-pixel classification of high resolution satellite imagery. Remote Sens. Environ. 2012, 117, 125–134. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef]
- Idso, S.B.; Schmugge, T.J.; Jackson, R.D.; Reginato, R.J. The Utility of Surface Temperature Measurements for the Remote Sensing of Surface Soil Water Status. J. Geophys. Res. 1978, 80, 3044–3049. [Google Scholar] [CrossRef]
- Nguyen, L.; Henebry, G. Urban heat islands as viewed by microwave radiometers and thermal time indices. Remote Sens. 2016, 8, 831. [Google Scholar] [CrossRef]
- Lobell, D.B. Changes in diurnal temperature range and national cereal yields. Agric. For. Meteorol. 2007, 145, 229–238. [Google Scholar] [CrossRef]
- Kan, H.; London, S.J.; Chen, H.; Song, G.; Chen, G.; Jiang, L.; Zhao, N.; Zhang, Y.; Chen, B. Diurnal Temperature range and daily mortality in Shanghai, China. Environ. Res. 2007, 103, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Kustas, W.P.; Anderson, M.C. A data mining approach for sharpening thermal satellite imagery over land. Remote Sens. 2012, 4, 3287–3319. [Google Scholar] [CrossRef]
Data | Accuracy | Spatial Resolution | Map Projection | Source |
---|---|---|---|---|
MOD11A1/MYD11A1 | 1–2 °C | 1 × 1 km2 | MODIS Sinusoidal | NASA’s EOSDIS 1 |
SEVIRI LST | 1–2 °C | 4 × 5 km2 | GEOS | IAASARS/NOA |
SRTM DEM | 6.2 m | 1 × 1 km2 | MODIS Sinusoidal | USGS 2 |
MOD13A2 (NDVI) | ±0.025 | 1 × 1 km2 | MODIS Sinusoidal | NASA’s EOSDIS 1 |
MOD11A2 (ε12μm) | 1.9% [44] | 1 × 1 km2 | MODIS Sinusoidal | NASA’s EOSDIS 1 |
MCD43B3 (WSA) | <5% | 1 × 1 km2 | MODIS Sinusoidal | NASA’s EOSDIS 1 |
ACPs | - | 1 × 1 km2 | MODIS Sinusoidal | UHH CliSAP 3 |
Analysis | DOYs (Year: 2014) |
---|---|
10:30 vs. 22:30 UTC | 153, 159, 160, 161, 162, 173, 175, 182, 184, 185, 187, 189, 192, 196, 198, 199, 208, 212, 216, 217, 219, 221, 223, 225, 226, 230, 232, 233, 235, 237, 240, 241, 242 |
13:30 vs. 01:30 UTC | 155, 160, 171, 180, 181, 183, 185, 186, 188, 192, 196, 197, 199, 201, 206, 208, 212, 213, 217, 218, 219, 220, 222, 226, 229, 231, 234, 242 |
Statistical Measure | 10:30 vs. 22:30 UTC Analysis | 13:30 vs. 01:30 UTC Analysis | ||
---|---|---|---|---|
Scheme 1 | Scheme 2 | Scheme 1 | Scheme 2 | |
Mean Difference (Bias) | −0.1 °C | −0.1 °C | +0.2 °C | +0.1 °C |
MAE | 1.1 °C | 0.8 °C | 1.6 °C | 1.2 °C |
RMSE | 1.4 °C | 1.0 °C | 2.0 °C | 1.6 °C |
Rho | 0.90 | 0.95 | 0.89 | 0.94 |
Analysis | Data | Mean (°C) | Min. (°C) | Max. (°C) | Percentiles (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1% | 5% | 25% | 50% | 75% | 95% | 99% | |||||
10:30 vs. 22:30 UTC | Reference | 12.9 | 1.1 | 20.1 | 6.3 | 7.7 | 10.3 | 13.1 | 15.6 | 17.4 | 18.3 |
Scheme 1 | 13.0 | 5.7 | 21.3 | 7.9 | 9.1 | 11.0 | 13.1 | 15.1 | 16.8 | 17.9 | |
Scheme 2 | 13.0 | 3.3 | 19.3 | 7.1 | 8.5 | 10.9 | 13.1 | 15.4 | 17.1 | 18.0 | |
13:30 vs. 01:30 UTC | Reference | 16.0 | 1.8 | 25.7 | 7.4 | 9.2 | 12.7 | 16.6 | 19.5 | 21.8 | 23.1 |
Scheme 1 | 15.9 | 7.2 | 25.2 | 9.6 | 11.3 | 13.8 | 16.3 | 18.1 | 20.2 | 21.2 | |
Scheme 2 | 16.0 | 6.6 | 22.9 | 9.1 | 10.7 | 13.4 | 16.5 | 18.6 | 20.6 | 21.5 |
Statistical Measures | 01:30 UTC | 10:30 UTC | 13:30 UTC | 22:30 UTC | ||||
---|---|---|---|---|---|---|---|---|
Sch. 1 | Sch. 2 | Sch. 1 | Sch. 2 | Sch. 1 | Sch. 2 | Sch. 1 | Sch. 2 | |
Mean Difference (Bias) (°C) | −0.41 | −0.41 | −0.46 | −0.46 | −0.19 | −0.16 | −0.48 | −0.50 |
Standard Deviation (°C) | 1.37 | 1.00 | 2.44 | 2.29 | 2.70 | 2.64 | 1.31 | 1.14 |
RMSE (°C) | 1.43 | 1.08 | 2.48 | 2.33 | 2.70 | 2.65 | 1.40 | 1.23 |
Rho | 0.87 | 0.93 | 0.87 | 0.89 | 0.87 | 0.88 | 0.89 | 0.91 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sismanidis, P.; Keramitsoglou, I.; Bechtel, B.; Kiranoudis, C.T. Improving the Downscaling of Diurnal Land Surface Temperatures Using the Annual Cycle Parameters as Disaggregation Kernels. Remote Sens. 2017, 9, 23. https://doi.org/10.3390/rs9010023
Sismanidis P, Keramitsoglou I, Bechtel B, Kiranoudis CT. Improving the Downscaling of Diurnal Land Surface Temperatures Using the Annual Cycle Parameters as Disaggregation Kernels. Remote Sensing. 2017; 9(1):23. https://doi.org/10.3390/rs9010023
Chicago/Turabian StyleSismanidis, Panagiotis, Iphigenia Keramitsoglou, Benjamin Bechtel, and Chris T. Kiranoudis. 2017. "Improving the Downscaling of Diurnal Land Surface Temperatures Using the Annual Cycle Parameters as Disaggregation Kernels" Remote Sensing 9, no. 1: 23. https://doi.org/10.3390/rs9010023
APA StyleSismanidis, P., Keramitsoglou, I., Bechtel, B., & Kiranoudis, C. T. (2017). Improving the Downscaling of Diurnal Land Surface Temperatures Using the Annual Cycle Parameters as Disaggregation Kernels. Remote Sensing, 9(1), 23. https://doi.org/10.3390/rs9010023