Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring
Abstract
:1. Introduction
2. Geological Setting and Heat Discharge
3. Network Configuration and Measurement Method
3.1. Configuration
3.2. Method
4. Results and Comparison with Main Volcano-Tectonic Features of off-Shore Caldera
Comparison with Volcano-Tectonic Features
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rothery, D.A.; Oppenheimer, C.; Bonneville, A. Infrared thermal monitoring. In Monitoring Active Volcanoes; McGuire, B., Kilburn, C.R.J., Murray, J., Eds.; UCL Press: London, UK, 1995; pp. 184–216. [Google Scholar]
- Brown, G.C.; Rymer, H.; Stevenson, D. Volcano monitoring by microgravity and energy budget analysis. J. Geol. Soc. Lond. 1991, 148, 589–593. [Google Scholar] [CrossRef]
- Hardee, H. Permeable convection above magma bodies. Tectonophysics 1982, 84, 179–195. [Google Scholar] [CrossRef]
- Bonneville, A.; Gouze, P. Thermal survey of Mount Etna volcano from space. Geophys. Res. Lett. 1992, 19, 725–728. [Google Scholar] [CrossRef]
- Hochstein, M.P.; Browne, P.R. Surface manifestations of geothermal system with volcanic heat sources. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: Cambridge, UK, 2000; pp. 835–855. [Google Scholar]
- Carlino, S.; Somma, R.; Troise, C.; De Natale, G. The geothermal exploration of Campanian volcanoes: Historical review and future development. Renew. Sustain. Energy Rev. 2012, 16, 1004–1030. [Google Scholar] [CrossRef]
- Lipman, P.W. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bull. Volcanol. 1997, 59, 198–218. [Google Scholar] [CrossRef]
- De Natale, G.; Troise, C.; Pingue, F.; Mastrolorenzo, G.; Pappalardo, L.; Boschi, E. The Campi Flegrei Caldera: Unrest mechanisms and hazards. In Mechanisms of Activity and Unrest at Large Calderas; Troise, C., de Natale, G., Kilburn, C.R.J., Eds.; Geological Society of London: London, UK, 2006; Volume 269, pp. 25–45. [Google Scholar]
- Carlino, S.; Somma, R. Eruptive versus non-eruptive behaviour of large calderas: the example of Campi Flegrei caldera (Southern Italy). Bull. Volcanol. 2010, 72, 871–886. [Google Scholar] [CrossRef]
- Acocella, V.; Di Lorenzo, R.; Newhall, C.; Scandone, R. An overview of recent (1988 to 2014) caldera unrest: Knowledge and perspectives. Rev. Geophys. 2015, 53, 896–955. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Cardellini, C.; Granieri, D.; Marini, L.; Ventura, G. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 2001, 106, 16213–16221. [Google Scholar] [CrossRef]
- Troise, C.; De Natale, G.; Pingue, F.; Obrizzo, F.; De Martino, P.; Tammaro, U.; Boschi, E. Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef][Green Version]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Troiano, A.; Di Giuseppe, M.G.; Petrillo, Z.; Troise, C.; De Natale, G. Ground deformation at calderas driven by fluid injection: Modeling unrest episodes at Campi Flegrei (Italy). Geophys. J. Int. 2011, 187, 833–847. [Google Scholar] [CrossRef]
- Chiodini, G.; Vandemeulebrouck, J.; Caliro, S.; D’Auria, L.; De Martino, P.; Mangiacapra, A.; Petrillo, Z. Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet. Sci. Lett. 2015, 414, 58–67. [Google Scholar] [CrossRef]
- Bianchi, R.; Coradini, A.; Federico, C.; Giberti, G.; Lanciano, P.; Pozzi, J.-P.; Sartoris, G.; Scandone, R. Modelling of surface ground deformation in volcanic areas: The 1970–1972 and 1982–1984 crises of Campi Flegrei, Italy. J. Geophys. Res. 1987, 92, 14139–14150. [Google Scholar] [CrossRef]
- Woo, J.Y.L.; Kilburn, C.R.J. Intrusion and deformation at Campi Flegrei, south-ern Italy: Sills, dikes, and regional extension. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Kobyakov, A.; Sauer, M.; Chowdhury, D. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon. 2010, 2, 1–59. [Google Scholar] [CrossRef]
- Curtis, A.; Kyle, P. Geothermal point sources identified in a fumarolic ice cave on Erebus volcano, Antarctica using fiber optic distributed temperature sensing. Geophys. Res. Lett. 2011, 38, L-16802. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lautz, L.K.; McKenzie, J.M. A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol. Process. 2012, 26, 1277–1290. [Google Scholar] [CrossRef]
- Rosi, M.; Sbrana, A. Phlegrean fields. Consig Quadermi de la Ricerra Scientifica 1987, 114, 1–175. [Google Scholar]
- Beauducel, F.; De Natale, G.; Obrizzo, F.; Pingue, F. 3-D Modelling of Campi Flegrei Ground Deformations: Role of Caldera Boundary Discontinuities. In Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards; Fernández, J., Ed.; Birkhäuser Basel: Basel, Switzerland, 2004; Volume 161, pp. 1329–1344. [Google Scholar]
- Sacchi, M.; Alessio, G.; Aquino, I.; Esposito, E.; Molisso, F.; Nappi, R.; Porfido, S.; Violante, C. Risultati preliminari della campagna oceanografica CAFE_07—Leg 3 nei Golfi di Napoli e Pozzuoli, Mar Tirreno Orientale. Quad. Geofis. 2009, 64, 3–26. [Google Scholar]
- Sacchi, M.; Pepe, F.; Corradino, M.; Insinga, D.D.; Molisso, F.; Lubritto, C. The Neapolitan Yellow Tuff caldera offshore the Campi Flegrei: Stratal architecture and kinematic reconstruction during the last 15 ky. Mar. Geol. 2014, 354, 15–33. [Google Scholar] [CrossRef][Green Version]
- Deino, A.L.; Orsi, G.; de Vita, S.; Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [Google Scholar] [CrossRef]
- Zollo, A.; Maercklin, N.; Vassallo, M.; Dello Iacono, D.; Virieux, J.; Gasparini, P. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef][Green Version]
- Dvorak, J.J.; Mastrolorenzo, G. The mechanism of recent vertical crustal movements in Campi Flegrei caldera, southern Italy. Geol. Soc. Am. Spec. Pap. 1991, 263, 1–48. [Google Scholar]
- Bellucci, F.; Woo, J.; Kilburn, C.R.J.; Rolandi, G. Ground deformation at Campi Flegrei, Italy: implications for hazard assessment. In Mechanisms of Activity and Unrest at Large Calderas; Troise, C., De Natale, G., Kilburn, C.R.J., Eds.; Geological Society of London: London, UK, 2006; Volume 269, pp. 141–157. [Google Scholar]
- Morhange, C.; Bourciern, M.; Laborel, J.; Gialannella, C.; Goiran, J.P.; Crimaco, L.; Vecchi, L. New data on historical relative sea level movements in Pozzuoli Phlaegrean Fields, southern Italy. Phys. Chem. Earth 1999, A24, 349–354. [Google Scholar] [CrossRef]
- Morhange, C.; Marriner, N.; Laborel, J.; Todesco, M.; Oberlin, C. Rapid sea-level movements and non-eruptive crustal deformations in the Phlaegrean Fields caldera, Italy. Geology 2006, 34, 93–96. [Google Scholar] [CrossRef]
- Lirer, L.; Rolandi, G.; Di Vito, M.A.; Mastrolorenzo, G. L’eruzione del Monte Nuovo (1538) nei Campi Flegrei. Boll. Soc. Geol. Ital. 1987, 106, 447–460. [Google Scholar]
- Acocella, V. Evaluating fracture patterns within a resurgent caldera: Campi Flegrei, Italy. Bull. Volcanol. 2010, 72, 623–638. [Google Scholar] [CrossRef]
- Berrino, G.; Corrado, G.; Luongo, G.; Toro, B. Ground deformation and gravity changes accompainying the 1982 Pozzuoli uplift. Bull. Volcanol. 1984, 47, 187–200. [Google Scholar] [CrossRef]
- Scandone, R.; Bellucci, F.; Lirer, L.; Rolandi, G. The structure of the Campanian Plain and the activity of the Neapolitan volcanoes (Italy). J. Volcanol. Geotherm. Res. 1991, 48, 1–31. [Google Scholar] [CrossRef]
- Heap, M.J.; Baud, P.; Meredith, P.G.; Vinciguerra, S.; Reuschlé, T. The permeability and elastic moduli of tuff from Campi Flegrei, Italy: Implications for ground deformation modelling. Solid Earth 2014, 5, 25–44. [Google Scholar] [CrossRef]
- AGIP. Geologia e Geofisica del Sistema Geotermico dei Campi Flegrei; Technical Report; Settore Esplor e Ric Geoterm-Metodol per l’Esplor Geotermica; AGIP: Milan, Italy, 1897; pp. 1–23. [Google Scholar]
- Somma, R.; Iuliano, S.; Matano, F.; Molisso, F.; Passaro, S.; Sacchi, M.; Troise, C.; De Natale, G. High-resolution morpho-bathymetry of Pozzuoli Bay, southern Italy. J. Maps 2015. [Google Scholar] [CrossRef]
- Ribera D’alcalà, M.; Conversano, F.; Corato, F.; Licandro, P.; Mangoni, O.; Marino, D.; Mazzocchi, M.G.; Modigh, M.; Montresor, M.; Nardella, M.; et al. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): An attempt to discern recurrences and trends. Sci. Mar. 2002, 68, 65–83. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Zeni, L. Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing. Opt. Express 2007, 15, 10397–10407. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, P.G.; Davis, A. For seismic profiling in very shallow water, a novel receiver. Sea Technol. 1993, 34, 9. [Google Scholar]
- Mosher, D.C.; Simpkin, P.G.; Peter, G. Environmental Marine Geoscience 1. Status and Trends of Marine High-Resolution Seismic Reflection Profiling: Data Acquistion. Geosci. Can. 1999, 26, 174–188. [Google Scholar]
- Fleischer, P.; Orsi, T.H.; Richardson, M.D.; Anderson, A.L. Distribution of free gas in marine sediments: A global overview. Geo-Mar. Lett. 2001, 21, 103–122. [Google Scholar]
- Jaupart, C.; Mareschal, J.C. Heat Generation and Transport in the Earth; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Carlino, S.; Troiano, A.; Di Giuseppe, M.G.; Tramelli, A.; Troise, C.; Somma, R.; De Natale, G. Exploitation of geothermal energy in active volcanic areas: A numerical modelling applied to high temperature Mofete geothermal field, at Campi Flegrei caldera (Southern Italy). Renew. Energy 2016, 87, 54–66. [Google Scholar] [CrossRef]
- Newhall, C.A.; Dzurisin, D. Historical Unrest at Large Calderas of the World; United States Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Ferraro, P.; De Natale, G. On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring. Opt. Lasers Eng. 2002, 37, 115–130. [Google Scholar] [CrossRef]
- Gagliardi, G.; Salza, M.; Ferraro, P.; De Natale, P.; Di Maio, A.; Carlino, S.; De Natale, G.; Boschi, E. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Meas. Sci. Technol. 2008, 19, 085306. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlino, S.; Mirabile, M.; Troise, C.; Sacchi, M.; Zeni, L.; Minardo, A.; Caccavale, M.; Darányi, V.; De Natale, G. Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring. Remote Sens. 2016, 8, 674. https://doi.org/10.3390/rs8080674
Carlino S, Mirabile M, Troise C, Sacchi M, Zeni L, Minardo A, Caccavale M, Darányi V, De Natale G. Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring. Remote Sensing. 2016; 8(8):674. https://doi.org/10.3390/rs8080674
Chicago/Turabian StyleCarlino, Stefano, Maurizio Mirabile, Claudia Troise, Marco Sacchi, Luigi Zeni, Aldo Minardo, Mauro Caccavale, Virág Darányi, and Giuseppe De Natale. 2016. "Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring" Remote Sensing 8, no. 8: 674. https://doi.org/10.3390/rs8080674