Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US
Abstract
:1. Introduction
2. Study Area
3. Data Description and Processing
3.1. MODIS Data
3.2. Weather Station Data
3.3. Auxiliary Data
3.4. Data Processing
4. Methodology
5. Results and Discussion
5.1. The Relationship between Observed Ta and Ts from MODIS Terra and Aqua
Datasets | Meanbias | RMSE | MAE | R |
---|---|---|---|---|
MODday & Tmax | 1.39 | 4.96 | 3.66 | 0.46 |
MODnight & Tmin | 2.26 | 3.06 | 2.54 | 0.93 |
MYDday & Tmax | 3.82 | 6.39 | 4.74 | 0.46 |
MYDnight & Tmin | 0.51 | 2.04 | 1.48 | 0.95 |
5.2. Ta Estimation from MODIS Ts
Model (Tmax) | Crops | Forest | Developed | Model (Tmin) | Crops | Forest | Developed | ||
---|---|---|---|---|---|---|---|---|---|
(1) MODday | RMSE | 4.24 | 3.32 | 3.32 | (11) MODday | RMSE | 5.08 | 4.43 | 4.06 |
MAE | 3.29 | 2.61 | 2.55 | MAE | 4.02 | 3.51 | 3.27 | ||
R2 | 0.21 | 0.61 | 0.53 | R2 | 0.12 | 0.44 | 0.42 | ||
(2) MODnight | RMSE | 2.58 | 2.57 | 2.65 | (12) MODnight | RMSE | 1.97 | 2.03 | 2.06 |
MAE | 2.00 | 2.04 | 2.04 | MAE | 1.51 | 1.58 | 1.58 | ||
R2 | 0.71 | 0.77 | 0.69 | R2 | 0.86 | 0.88 | 0.85 | ||
(3) MYDday | RMSE | 4.27 | 3.40 | 3.56 | (13) MYDday | RMSE | 5.13 | 4.48 | 4.12 |
MAE | 3.35 | 2.66 | 2.93 | MAE | 4.06 | 3.54 | 3.37 | ||
R2 | 0.20 | 0.59 | 0.55 | R2 | 0.10 | 0.42 | 0.40 | ||
(4) MYDnight | RMSE | 2.74 | 2.70 | 2.69 | (14) MYDnight | RMSE | 1.84 | 1.83 | 1.82 |
MAE | 2.12 | 2.11 | 2.10 | MAE | 1.36 | 1.36 | 1.36 | ||
R2 | 0.67 | 0.74 | 0.67 | R2 | 0.88 | 0.90 | 0.88 | ||
(5) MODday + MODnight | RMSE | 2.39 | 2.20 | 2.39 | (15) MODday + MODnight | RMSE | 1.95 | 2.03 | 2.04 |
MAE | 1.85 | 1.77 | 1.89 | MAE | 1.49 | 1.59 | 1.59 | ||
R2 | 0.75 | 0.83 | 0.74 | R2 | 0.86 | 0.88 | 0.85 | ||
(6) MYDday + MYDnight | RMSE | 2.51 | 2.31 | 2.34 | (16) MYDday + MYDnight | RMSE | 1.81 | 1.82 | 1.81 |
MAE | 1.92 | 1.84 | 1.83 | MAE | 1.33 | 1.36 | 1.35 | ||
R2 | 0.72 | 0.81 | 0.76 | R2 | 0.88 | 0.90 | 0.88 | ||
(7) MODday + MODnight + DOY | RMSE | 2.27 | 2.17 | 2.33 | (17) MYDnight + DOY | RMSE | 1.76 | 1.82 | 2.14 |
MAE | 1.74 | 1.75 | 1.86 | MAE | 1.30 | 1.34 | 1.69 | ||
R2 | 0.77 | 0.83 | 0.76 | R2 | 0.88 | 0.90 | 0.88 | ||
(8) MODday + MODnight + SZA | RMSE | 2.31 | 2.19 | 2.28 | (18) MYDnight + SZA | RMSE | 1.75 | 1.82 | 2.36 |
MAE | 1.77 | 1.75 | 1.80 | MAE | 1.30 | 1.36 | 1.91 | ||
R2 | 0.77 | 0.83 | 0.77 | R2 | 0.88 | 0.90 | 0.88 | ||
(9) MODday + MODnight + Lat | RMSE | 2.39 | 2.15 | 2.38 | (19) MYDnight + Lat | RMSE | 1.84 | 1.82 | 1.81 |
MAE | 1.85 | 1.71 | 1.89 | MAE | 1.35 | 1.35 | 1.34 | ||
R2 | 0.75 | 0.83 | 0.74 | R2 | 0.88 | 0.90 | 0.88 | ||
(10) MODday + MODnight + Elev | RMSE | 2.31 | 2.20 | 2.32 | (20) MYDnight + Elev | RMSE | 1.84 | 1.84 | 2.00 |
MAE | 1.77 | 1.76 | 1.82 | MAE | 1.36 | 1.38 | 1.49 | ||
R2 | 0.77 | 0.83 | 0.76 | R2 | 0.88 | 0.90 | 0.88 |
5.3. Correlation Analysis of MODIS Ts and Tmax
5.4. Spatial and Temporal Patterns
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Bruin, H.A.R.; Trigo, I.F.; Jitan, M.A.; TemesgenEnku, N.; van der Tol, C.; Gieske, A.S.M. Reference crop evapotranspiration derived from geo-stationary satellite imagery: A case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan. Hydrol. Earth Syst. Sci. 2010, 14, 2219–2228. [Google Scholar]
- Gao, H.; Tang, Q.; Shi, X.; Zhu, C.; Bohn, T.J.; Su, F.; Sheffield, J.; Pan, M.; Lettenmaier, D.P.; Wood, E.F.; et al. Water budget record from Variable Infiltration Capacity (VIC) Model. Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records. Available online: http://grid1.cos.gmu.edu:8090/OPeNDAPClient/ATBD_Chapter6_doc.pdf (accessed on 1 October 2014).
- Lofgren, B.M.; Hunter, T.S.; Wilbarger, J. Effects of using air temperature as a proxy for evapotranspiration in climate change scenarios of Great Lakes basin hydrology. J. Gt. Lakes Res. 2011, 37, 744–752. [Google Scholar]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar]
- Willmott, C.J.; Robeson, S.M. Climatologically Aided Interpolation (CAI) of terrestrial air temperature. Int. J. Climatol. 1995, 15, 221–229. [Google Scholar]
- Pinheiro, A.C.T.; Mahoney, R.; Privette, J.L.; Tucker, C.J. Development of a daily long-term record of NOAA-14 AVHRR land surface temperature over Africa. Remote Sens. Environ. 2006, 103, 153–164. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Y.Q.; Li, Z.L. Validation of the land-surface temperature products retrieved from moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar]
- Atitar, M.; Sobrino, J.A. A split-window algorithm for estimating LST from Meteosat 9 data: Test and comparison with in situ data and MODIS LSTs. IEEE Geosci. Remote Sens. Lett. 2009, 6, 122–126. [Google Scholar]
- Mostovoy, G.V.; King, R.L.; Reddy, K.R.; Kakani, V.G.; Filippova, M.G. Statistical estimation of daily maximum and minimum air temperatures from MODIS Ts data over the state of Mississippi. Geosci. Remote Sens. 2006, 43, 78–110. [Google Scholar]
- Lin, S.; Moore, N.J.; Messina, J.P.; de Visser, M.H.; Wu, J. Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 128–140. [Google Scholar]
- Frederick, K.L.; Edward, J.T.; Dennis, G.T. The Atmosphere: An Introduction to Meteorology, 10th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Goward, S.N.; Dye, D. Global biospheric monitoring with remote sensing. In The Use of Remote Sensing in Modeling Forest Productivity at Scales From the Stand to the Globe; Gholtz, H.L., Nakane, K., Shimoda, H., Eds.; Kluwer Academic: New York, NY, USA, 1997; pp. 241–272. [Google Scholar]
- Prince, S.D.; Goetz, S.J.; Dubayah, R.O.; Czajkowski, K.P.; Thawley, M. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using advanced very high-resolution radiometer satellite observations: Comparison with field observations. J. Hydrol. 1998, 213, 230–249. [Google Scholar]
- Stisen, S.; Sandholt, I.; Norgaard, A.; Fensholt, R.; Eklundh, L. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens. Environ. 2007, 110, 262–274. [Google Scholar]
- Zakšek, K.; Schroedter-Homscheidt, M. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments. ISPRS J. Photogramm. Remote Sens. 2009, 64, 414–421. [Google Scholar]
- Cresswell, M.P.; Morse, A.P.; Thomson, M.C.; Connor, S.J. Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int. J. Remote Sens. 1999, 20, 1125–1132. [Google Scholar]
- Jang, J.D.; Viau, A.A.; Anctil, F. Neural network estimation of air temperatures from AVHRR data. Int. J. Remote Sens. 2004, 25, 4541–4554. [Google Scholar]
- Fu, G.; Shen, Z.X.; Zhang, X.Z.; Shi, P.L.; Zhang, Y.J.; Wu, J.S. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecol. Sin. 2011, 21, 8–13. [Google Scholar]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar]
- Nemani, R.R.; Running, S.W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data. J. Appl. Meteorol. 1989, 28, 276–284. [Google Scholar]
- Zhu, W.; Lű, A.; Jia, S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar]
- Karnieli, A.; Dall’Olmo, G. Remote sensing monitoring of desertification, phenology, and droughts. Manag. Environ. Q. Int. J. 2003, 14, 22–38. [Google Scholar]
- Sun, Y.J.; Wang, J.F.; Zhang, R.H.; Gillies, R.R.; Xue, Y.; Bo, Y.C. Air temperature retrieval from remote sensing data based on thermodynamics. Theor. Appl. Climatol. 2005, 80, 37–48. [Google Scholar]
- Gallo, K.; Hale, R.; Tarpley, D.; Yu, Y. Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. J. Appl. Meteorol. Climatol. 2011, 50, 767–775. [Google Scholar]
- Shah, D.B.; Pandya, M.R.; Trivedi, H.J.; Jani, A.R. Estimating minimum and maximum air temperature using MODIS data over Indo-Gangetic Plain. J. Earth Syst. Sci. 2013, 122, 1593–1605. [Google Scholar]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar]
- USDA. Crop Production 2012 Summary. Available online: http://usda01.library.cornell.edu/usda/current/CropProdSu/CropProdSu-01–10–2014.pdf (accessed on 28 May 2014).
- EOSDIS. Available online: http://reverb.echo.nasa.gov/reverb/ (accessed on 01 October 2014).
- National Climatic Data Center. Available online: http://www.ncdc.noaa.gov/ (accessed on 01 October 2014).
- Cropland Data Layers. Available online: http://www.nass.usda.gov/research/Cropland/SARS1a.htm (accessed on 01 October 2014).
- Pervez, M.S.; Brown, J.F. Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens. 2010, 2, 2388–2412. [Google Scholar]
- The Regional and Mesoscale Meteorology Branch. Solar Zenith Angle algorithms. Available online: http://rammb.cira.colostate.edu/wmovl/vrl/tutorials/euromet/courses/english/nwp/n5720/n5720005.htm (accessed on 18 November 2014).
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar]
- Wan, Z.; Li, Z.L. Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens. 2008, 29, 5373–5395. [Google Scholar]
- Rizzoli, A.; Neteler, M.; Rosà, R.; Versini, W.; Cristofolini, A.; Bregoli, M. Early detection of TBEv spatial distribution and activity in the Province of Trento assessed using serological and remotely-sensed climatic data. Geospat. Health 2007, 1, 169–176. [Google Scholar]
- Janssen, P.H.M.; Heuberger, P.S.C. Calibration of process-oriented models. Ecol. Model. 1995, 83, 55–66. [Google Scholar]
- Landsberg, H.E. Interdiurnal Variability of Pressure and Temperature in the Coterminous United States; Technical Paper No. 56; U.S; Department of Commerce: Washington, DC, USA, 1966. [Google Scholar]
- Rosenthal, S.L. The interdiurnal variability of surface-air temperature over the North Atlantic Ocean. J. Meteorol. 1960, 17, 1–7. [Google Scholar]
- Parton, W.J.; Logan, J.A. A model for diurnal variation in soil and air temperature. Agric. Meteorol. 1981, 23, 205–216. [Google Scholar]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics; Academic Press: London, UK, 2007. [Google Scholar]
- Collatz, G.J.; Bounoua, L.; Los, S.O.; Randall, D.A.; Fung, I.Y.; Sellers, P.J. A mechanism for the influence of vegetation on the response of the diurnal temperature range to a changing climate. Geophys. Res. Lett. 2000, 27, 3381–3384. [Google Scholar]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Clim. 1999, 12, 2451–2473. [Google Scholar]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker., D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar]
- Weather Almanac. Available online: http://www.weatherexplained.com/Vol-1/Weather-Fundamentals.html (accessed on 18 May 2014).
- Johnson, B.; Thompson, C.; Giri, A.; NewKirk, S.V. Nebraska Irrigation Fact Sheet. Available online: http://agecon.unl.edu/c/document_library/get_file?uuid=a9fcd902-4da9-4c3f-9e04-c8b56a9b22c7&groupId=2369805&.pdf (accessed on 28 May 2014).
- Ackerman, S.; Strabala, K.; Menzel, P.; Frey, R.; Moeller, C.; Gumley, L. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 1998, 103, 141–157. [Google Scholar]
- Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens. 2010, 2, 333–351. [Google Scholar]
- Czajkowski, K.P.; Goward, S.N.; Stadler, S.; Walz, A. Thermal remote sensing of near surface environmental variables: Application over the Oklahoma Mesonet. Prof. Geogr. 2000, 52, 345–357. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Wardlow, B.D.; Tadesse, T.; Shan, J.; Hayes, M.J.; Li, D.; Xiang, D. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US. Remote Sens. 2015, 7, 951-970. https://doi.org/10.3390/rs70100951
Zeng L, Wardlow BD, Tadesse T, Shan J, Hayes MJ, Li D, Xiang D. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US. Remote Sensing. 2015; 7(1):951-970. https://doi.org/10.3390/rs70100951
Chicago/Turabian StyleZeng, Linglin, Brian D. Wardlow, Tsegaye Tadesse, Jie Shan, Michael J. Hayes, Deren Li, and Daxiang Xiang. 2015. "Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US" Remote Sensing 7, no. 1: 951-970. https://doi.org/10.3390/rs70100951
APA StyleZeng, L., Wardlow, B. D., Tadesse, T., Shan, J., Hayes, M. J., Li, D., & Xiang, D. (2015). Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US. Remote Sensing, 7(1), 951-970. https://doi.org/10.3390/rs70100951