Static Stress Transfer and Fault Interaction Within the 2008–2020 Yutian Earthquake Sequence Constrained by InSAR-Derived Slip Models
Highlights
- InSAR observations constrain the coseismic deformation field and fault slip distribution of the 2020 Mw 6.3 Yutian earthquake.
- Coulomb stress calculations based on slip models of four Yutian earthquakes reveal complex stress interactions among neighboring faults.
- The 2020 Yutian earthquake can only be fully understood in the context of cumulative stress changes from prior events.
- Multi-earthquake stress analysis provides improved insight into fault interaction and seismic hazard in extensional tectonic settings.
Abstract
1. Introduction
2. Data and Fault Slip Models
2.1. Coseismic Deformation of the 2020 Yutian Earthquake
2.2. Fault Slip Distribution of the 2020 Yutian Earthquake
2.3. Fault Slip Model for the 2008 and 2014 Yutian Earthquakes
- (1)
- The 2008 Mw 7.3 Yutian Earthquake
- (2)
- The 2014 Mw 6.9 Yutian Earthquake
2.4. Coseismic Fault Slip Model of the 2012 Yutian Earthquake
3. Coulomb Stress Calculation Method
- (1)
- Stress Transfer Between Earthquakes
- (2)
- Stress Perturbation on the Regional Fault System
4. Discussion
4.1. Static Coulomb Stress Interactions Between Earthquakes
4.2. Regional Stress Perturbation Characteristics
4.3. Implications for Multi-Event Stress Evolution and Fault-System Behavior
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A


References
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Armijo, R.; Tapponnier, P.; Han, T. Late Cenozoic Right-lateral Strike-slip Faulting in Southern Tibet. J. Geophys. Res. Solid Earth 1989, 94, 2787–2838. [Google Scholar] [CrossRef]
- Furuya, M.; Yasuda, T. The 2008 Yutian Normal Faulting Earthquake (Mw 7.1), NW Tibet: Non-Planar Fault Modeling and Implications for the Karakax Fault. Tectonophysics 2011, 511, 125–133. [Google Scholar] [CrossRef]
- Bie, L.; Ryder, I. Recent Seismic and Aseismic Activity in the Ashikule Stepover Zone, NW Tibet. Geophys. J. Int. 2014, 198, 1632–1643. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Jónsson, S.; Klinger, Y.; Zhang, G. Source Model of the 2014 Mw 6.9 Yutian Earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismol. Res. Lett. 2020, 91, 3161–3170. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Ding, K.; Xu, C. Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E–W Thinning in Northern Tibet. Remote Sens. 2020, 12, 3012. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Tan, K.; Lu, X.; Zuo, X. Slip Model of the 2020 Yutian (Northwestern Tibetan Plateau) Earthquake Derived From Joint Inversion of InSAR and Teleseismic Data. Earth Space Sci. 2021, 8, e2020EA001409. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, C.; Li, Z.; Zhang, X.; Zhang, M.; Feng, W.; Han, B.; Peng, J. Co- and Post-Seismic Mechanisms of the 2020 Mw 6.3 Yutian Earthquake and Local Stress Evolution. Earth Space Sci. 2023, 10, e2022EA002604. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static Stress Changes and the Triggering of Earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. Available online: https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/84/3/935/102745/Static-stress-changes-and-the-triggering-of (accessed on 13 January 2026).
- Stein, R.S. The Role of Stress Transfer in Earthquake Occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Harris, R.A. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. J. Geophys. Res. Solid Earth 1998, 103, 24347–24358. [Google Scholar] [CrossRef]
- Freed, A.M. Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer. Annu. Rev. Earth Planet. Sci. 2005, 33, 335–367. [Google Scholar] [CrossRef]
- Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A. Stress Sensitivity of Fault Seismicity: A Comparison between Limited-offset Oblique and Major Strike-slip Faults. J. Geophys. Res. Solid Earth 1999, 104, 20183–20202. [Google Scholar] [CrossRef]
- Ziv, A.; Rubin, A.M. Static Stress Transfer and Earthquake Triggering: No Lower Threshold in Sight? J. Geophys. Res. Solid Earth 2000, 105, 13631–13642. [Google Scholar] [CrossRef]
- Mildon, Z.K.; Roberts, G.P.; Faure Walker, J.P.; Iezzi, F. Coulomb Stress Transfer and Fault Interaction over Millennia on Non-Planar Active Normal Faults: The Mw 6.5–5.0 Seismic Sequence of 2016–2017, Central Italy. Geophys. J. Int. 2017, 210, 1206–1218. [Google Scholar] [CrossRef]
- Steacy, S.; Gomberg, J.; Cocco, M. Introduction to Special Section: Stress Transfer, Earthquake Triggering, and Time-dependent Seismic Hazard. J. Geophys. Res. Solid Earth 2005, 110, 2005JB003692. [Google Scholar] [CrossRef]
- Jia, K.; Zhou, S.; Zhuang, J.; Jiang, C. Stress Transfer Along the Western Boundary of the Bayan Har Block on the Tibet Plateau from the 2008 to 2020 Yutian Earthquake Sequence in China. Geophys. Res. Lett. 2021, 48, e2021GL094125. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; England, P.C.; Jackson, J.A.; Li, Z.; Parsons, B. Extension on the Tibetan Plateau: Recent Normal Faulting Measured by InSAR and Body Wave Seismology: Extension on the Tibetan Plateau. Geophys. J. Int. 2010, 183, 503–535. [Google Scholar] [CrossRef]
- Wright, T.; Parsons, B.; Fielding, E. Measurement of Interseismic Strain Accumulation across the North Anatolian Fault by Satellite Radar Interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosyst. 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Weston, J.; Ferreira, A.M.G.; Funning, G.J. Joint Earthquake Source Inversions Using Seismo-Geodesy and 3-D Earth Models. Geophys. J. Int. 2014, 198, 671–696. [Google Scholar] [CrossRef]
- Yague-Martinez, N.; Prats-Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Scheiber, R.; Moreira, A. Coregistration of Interferometric SAR Images Using Spectral Diversity. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2179–2191. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-Dimensional Phase Unwrapping with Use of Statistical Models for Cost Functions in Nonlinear Optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef]
- Costantini, M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar Interferometry and Its Application to Changes in the Earth’s Surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Simons, M. Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations. Bull. Seismol. Soc. Am. 2002, 92, 1390–1402. [Google Scholar] [CrossRef]
- Wang, R.; Diao, F.; Hoechner, A. SDM—A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Geometry. Geophys. Res. Abstr. 2013, 15, EGU2013-2411-1. Available online: https://meetingorganizer.copernicus.org/EGU2013/EGU2013-2411-1.pdf (accessed on 13 January 2026).
- Wang, C.; Shan, X.; Wang, C.; Ding, X.; Zhang, G.; Masterlark, T. Using Finite Element and Okada Models to Invert Coseismic Slip of the 2008 Mw 7.2 Yutian Earthquake, China, from InSAR Data. J. Seismol. 2013, 17, 347–360. [Google Scholar] [CrossRef]
- Okada, Y. Internal Deformation Due to Shear and Tensile Faults in A Half-Space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- Zhang, G.-H.; Qu, C.-Y.; Shan, X.-J.; Zhang, G.-F.; Song, X.-G.; Wang, R.-J.; Li, Z.-H.; Hu, J.-C. The Coseismic InSAR Measurements of 2008 Yutian Earthquake and Its Inversion for Source Parameters. Chin. J. Geophys. 2011, 54, 2753–2760. (In Chinese) [Google Scholar] [CrossRef]
- Shan, X.; Zhang, G.; Wang, C.; Qu, C.; Song, X.; Zhang, G.; Guo, L. Source Characteristics of the Yutian Earthquake in 2008 from Inversion of the Co-Seismic Deformation Field Mapped by InSAR. J. Asian Earth Sci. 2011, 40, 935–942. [Google Scholar] [CrossRef]
- Xu, X.; Tan, X.; Yu, G.; Wu, G.; Fang, W.; Chen, J.; Song, H.; Shen, J. Normal- and Oblique-Slip of the 2008 Yutian Earthquake: Evidence for Eastward Block Motion, Northern Tibetan Plateau. Tectonophysics 2013, 584, 152–165. [Google Scholar] [CrossRef]
- Song, X.; Han, N.; Shan, X.; Wang, C.; Zhang, Y.; Yin, H.; Zhang, G.; Xiu, W. Three-Dimensional Fault Geometry and Kinematics of the 2008 M 7.1 Yutian Earthquake Revealed by Very-High Resolution Satellite Stereo Imagery. Remote Sens. Environ. 2019, 232, 111300. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Kanamori, H. The Energy Release in Great Earthquakes. J. Geophys. Res. 1977, 82, 2981–2987. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S.B. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer. J. Geophys. Res. Solid Earth 2005, 110, 2004JB003415. [Google Scholar] [CrossRef]
- Lin, J.; Stein, R.S. Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and Nearby Thrust and Strike-slip Faults. J. Geophys. Res. Solid Earth 2004, 109, 2003JB002607. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching—User Guide: U.S. Geological Survey Open-File Report 2011–1060. 2011; 63p. Available online: https://pubs.usgs.gov/of/2011/1060/ (accessed on 8 January 2026).
- Wang, R.; Lorenzo-Martín, F.; Roth, F. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1.0—A 1-Degree Global Model of Earth’s Crust. Geophys. Res. Abstr. 2013, 15, EGU2013-2658. Available online: https://meetingorganizer.copernicus.org/EGU2013/EGU2013-2658.pdf (accessed on 13 January 2026).
- Zheng, J. Geometry of the Altun Fracture Zone. Geol. Bull. China 1991, 1, 54–59+24. Available online: https://www.cgsjournals.com/dztb/article/id/02daed8c-f21a-4515-a390-7300894d1cbf (accessed on 13 January 2026).
- Wan, Y.G.; Shen, Z.K.; Sheng, S.Z.; Xu, X.-F. The mechanical effects of the 2008 Ms7.3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism. Chin. J. Geophys. 2010, 53, 280–289. (In Chinese) [Google Scholar] [CrossRef]
- Luo, J.; Zuo, K.; Zhao, C. Focal mechanism solutions and seismogenic faults of the Yutian MS6.4 earthquake on 26 June 2020. Chin. J. Geophys. 2021, 64, 2362–2373. [Google Scholar]
- Gan, W.; Zhang, P.; Shen, Z.-K.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112, B08416. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Shen, Z.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]






| Track | Reference Date | Secondary Date | Perp.B (m) |
|---|---|---|---|
| T165(D) | 17 June 2020 | 29 June 2020 | −86.3 |
| T158(A) | 22 June 2020 | 4 July 2020 | 84.6 |
| Layer | Depth/km | /(km/s) | /(km/s) | Density/(kg/m3) | Eta1 (Pa·s) | Eta2 (Pa·s) |
|---|---|---|---|---|---|---|
| 1 | 0.0 | 3.4 | 1.73 | 2290 | 0 | 0 |
| 2 | 5.36 | 6 | 3.52 | 2720 | 0 | 0 |
| 3 | 5.36 | 6 | 3.52 | 2720 | 0 | 0 |
| 4 | 23.63 | 6.3 | 3.68 | 2790 | 0 | 0 |
| 5 | 23.63 | 6.3 | 3.68 | 2790 | 0 | 0 |
| 6 | 37.55 | 6.6 | 3.82 | 2850 | 0 | 0 |
| 7 | 37.55 | 6.6 | 3.82 | 2850 | 0 | 0 |
| 8 | 52.63 | 8.14 | 4.52 | 3350 | 0 | 0 |
| 9 | 52.63 | 8.6 | 4.72 | 3550 | 0 | 0 |
| Start | End | Strike | Dip | Refer to | |
|---|---|---|---|---|---|
| F1 | 79.00°E 35.21°N | 80.35°E 34.67°N | - | 90 | - |
| F2 | 79.95°E 34.53°N | 81.83°E 34.86°N | 353 | 62 | 200910251140A |
| F3 | 82.86°E 34.37°N | 82.9°E 34.8°N | 223 | 83 | 201204100808A |
| F4 | 83.45°E 34.42°N | 83.45°E 34.79°N | 40 | 61 | 061585A |
| F5 (Guozha Co Fault) | 81.26°E 35.04°N | 80.22°E 34.83°N | 353 | 62 | 200910251140A |
| F6 | 80.77°E 35.07°N | 79.62°E 35.52°N | 322 | 58 | 053183A |
| F7 (Yulong Kash Fault) | 81.52°E 35.55°N | 81.35°E 35.3°N | 358 | 41 | 200803202233A |
| F8 (Gongga Co Fault) | 81.5°E 35.16°N | 81.67°E 35.45°N | 209 | 46 | 200812111316A |
| 81.8°E 35.51°N | 81.97°E 35.55°N | 10 | 39 | 202006260130A | |
| 82.09°E 35.63°N | 82.62°E 36.06°N | 192 | 39 | 100780A | |
| F9 (Ashikule Fault) | 83.21°E 36.34°N | 82.15°E 36.0°N | 215 | 45 | 103182C |
| F10 | 83.13°E 36.14°N | 84.97°E 36.41°N | 236 | 64 | 200712300955A |
| F11 | 80.83°E 34.37°N | 84.0°E 35.71°N | - | 90 | - |
| F12 | 80.41°E 34.56°N | 83.62°E 34.63°N | 88 | 90 | - |
| AFK-L | - | - | - | - | Zheng, 1991 [45] |
| AFK-R | - | - | - | - | Zheng, 1991 [45] |
| Longmu Co–Bangda Co Fault | - | - | - | 90 | Wan, 2010 [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fan, X.; Zhang, G.; Shan, X. Static Stress Transfer and Fault Interaction Within the 2008–2020 Yutian Earthquake Sequence Constrained by InSAR-Derived Slip Models. Remote Sens. 2026, 18, 288. https://doi.org/10.3390/rs18020288
Fan X, Zhang G, Shan X. Static Stress Transfer and Fault Interaction Within the 2008–2020 Yutian Earthquake Sequence Constrained by InSAR-Derived Slip Models. Remote Sensing. 2026; 18(2):288. https://doi.org/10.3390/rs18020288
Chicago/Turabian StyleFan, Xiaoran, Guohong Zhang, and Xinjian Shan. 2026. "Static Stress Transfer and Fault Interaction Within the 2008–2020 Yutian Earthquake Sequence Constrained by InSAR-Derived Slip Models" Remote Sensing 18, no. 2: 288. https://doi.org/10.3390/rs18020288
APA StyleFan, X., Zhang, G., & Shan, X. (2026). Static Stress Transfer and Fault Interaction Within the 2008–2020 Yutian Earthquake Sequence Constrained by InSAR-Derived Slip Models. Remote Sensing, 18(2), 288. https://doi.org/10.3390/rs18020288

