A Filter Method for Vehicle-Based Moving LiDAR Point Cloud Data for Removing IRI-Insensitive Components of Longitudinal Profile
Highlights
- A highly accurate and robust Gaussian filter that adapts to any data source.
- The method outperforms both traditional filters and deep learning approaches.
- Enables real-time, precise road assessment for cost-effective maintenance.
- Provides a practical and reliable solution that is ready for immediate industry deployment.
Abstract
1. Introduction
- (1)
- A Gaussian filtering algorithm based on the Nyquist sampling theorem was proposed, enabling the precise removal of IRI-insensitive wavelengths (1.3–29.4 m) while maintaining computational efficiency.
- (2)
- A computationally efficient filtering framework with automatic parameter adaptation to sampling interval variations (validated for 10–150 mm range, spanning 15× variation) across two sensor acquisition geometries: line-scanning profilers (ICC MDR 4086L3, D = 25/150 mm) and rotating multi-beam LiDAR (Velodyne HDL-32E, D = 10 mm) on asphalt concrete pavements under standard measurement conditions (dry, daytime, ≥10 °C).
- (3)
- Validation using both the U.S. LTPP and France Paris–Lille datasets demonstrated superior performance, with a mean absolute error of 0.051 m/km and a mean relative error below 4% in the IRI calculation.
- (4)
- The method achieves full compliance with the ASTM E1926-08 standards and enables direct integration into quarter-car models, offering a practical real-time solution for pavement maintenance and autonomous driving applications.
2. Related Work
2.1. Mathematical Computational Methods
2.2. The Quarter-Car Model
3. Gaussian Filtering Method Incorporating the Nyquist Theorem
3.1. Gaussian Filter for Removing IRI-Insensitive Components
3.2. Nyquist Sampling Theorem to Determine Gaussian Template Lengths
3.3. Boundary Point Processing
4. Experimental Data
4.1. Dataset-1
4.2. Dataset-2
5. Experiment Validations and Discussion
5.1. Experiment Validation Using Dataset-1
5.1.1. Filtering Effect of Gaussian Filter for Longitudinal Profile Data
5.1.2. 25 mm and 150 mm Interval Sampling Experiment
5.1.3. Filtering Performance Comparison on Typical Pavement Features
- (1)
- The moving average filter preserves 99% of original amplitude at Feature A, indicating minimal signal attenuation. However, spectral analysis reveals that only 87% of preserved energy lies within the IRI-sensitive band (1.3–29.4 m), with the remaining 13% comprising <1.3 m sensor noise. This is consistent with the unstable deviation in the high-frequency region shown in Figure 10a, confirming the limitations of moving average filtering at small 25 mm sampling intervals. Its comprehensive score of only 64.6 ranks lowest among the four methods. Overall, the accuracy of the moving average filter is acceptable, but its ability to preserve local features is relatively poor.
- (2)
- The Butterworth filter shows excessive suppression of IRI-sensitive features, with retention rates of only 26–132% across the three feature types. Particularly at Feature B (Wave Deformation, 18–22 m wavelength, approaching the 29.4 m upper limit), energy loss reaches 73.5%, and at Feature A (Pothole Cluster), amplitude loss reaches 74.2%. This phenomenon originates from its steep cutoff characteristics (−40 dB/decade), corresponding to the excessive attenuation shown in Figure 10b,d in PSD, potentially leading to systematic IRI underestimation. The comprehensive score of 85.1 indicates moderate performance.
- (3)
- The Kalman filter demonstrates excellent performance in feature preservation accuracy, with a comprehensive score of 93.1, second only to Gaussian filtering (98.2). At Feature C (Transverse Crack), edge sharpness retention is 71.5%, significantly superior to Butterworth’s 132.1% (over-enhancement) and moving average’s 550% (noise retention). However, Kalman filtering shows retention rates of only 31.8% and 33.4% at Features A and B, indicating some degree of suppression of valid signals within the IRI-sensitive band. More critically, Kalman filtering requires precise configuration of state-space model parameters (process noise covariance Q, observation noise covariance R), with computational complexity O(n3), significantly higher than Gaussian filtering’s O(n·k). As demonstrated in the boundary point prediction experiments explored in Section 5.1, Kalman filtering is sensitive to initial states, making parameter tuning challenging in practical applications.
- (4)
- The Gaussian filter shows stable and balanced performance across all three feature types, with the highest comprehensive score of 98.2: preserving a pothole feature amplitude of 1.83 mm (80.1% of original data), wave feature energy of 15,571 mm2, and crack feature edge sharpness of 0.023 mm/m. Its smooth frequency-domain transition characteristics (shown in Figure 10) avoid discontinuities near cutoff frequencies, achieving complete preservation of the 1.3–29.4 m sensitive band while effectively suppressing non-sensitive components at <1.3 m and >29.4 m. More importantly, Gaussian filter parameters are simply and clearly determined (only dependent on sampling interval D and cutoff wavelength Tm, Equation (10)), requiring no complex tuning or state-space modeling.
5.1.4. Error Analysis and Robustness Verification
5.2. Experiment Validation Using Dataset-2
6. Discussion
6.1. Deep Learning Exploration Experiment
6.2. The Challenges of the Deep Learning Path
6.3. Deep Learning Comparative Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IRI | International Roughness Index |
| LTPP | Long-Term Pavement Performance |
| PSD | Power Spectral Density |
| PCI | Pavement Condition Index |
| SRI | Skid Resistance Index |
| MEMS | Micro Electromechanical System |
| UAVs | Unmanned Aerial Vehicles |
| ASTM | American Society for Testing and Materials |
| NCHRP | National Highway Research Program |
| FFT | Fast Fourier Transform |
| MAE | Mean Absolute Error |
| RMSE | Root Mean Square Error |
| LSTM | Long Short-Term Memory |
References
- Radović, N.; Jokanović, I.; Matić, B.; Šešlija, M. A measurement of roughness as indicator of road network condition—Case study Serbia. Teh. Vjesn. 2016, 23, 881–884. [Google Scholar]
- Sharif, F.; Tauqir, A. The effects of infrastructure development and carbon emissions on economic growth. Environ. Sci. Pollut. Res. 2021, 28, 36259–36273. [Google Scholar] [CrossRef] [PubMed]
- Bajic, M.; Pour, S.M.; Skar, A.; Pettinari, M.; Levenberg, E.; Alstrøm, T.S. Road Roughness Estimation Using Machine Learning. arXiv 2021, arXiv:2107.01199. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Y.; Hu, M.; Shi, L.; Mao, Z.; Sugumaran, V. RIOMS: An intelligent system for operation and maintenance of urban roads using spatio-temporal data in smart cities. Future Gener. Comput. Syst. 2021, 115, 583–609. [Google Scholar] [CrossRef]
- Hettiarachchi, C.; Yuan, J.; Amirkhanian, S.; Xiao, F. Measurement of pavement unevenness and evaluation through the IRI parameter—An overview. Measurement 2023, 206, 112284. [Google Scholar] [CrossRef]
- Li, J.-A.; Feng, D. Fatigue life evaluation of bridge stay cables subject to monitoring traffic and considering road roughness. Eng. Struct. 2023, 293, 116572. [Google Scholar] [CrossRef]
- Rasol, M.; Schmidt, F.; Ientile, S.; Adelaide, L.; Nedjar, B.; Kane, M.; Chevalier, C. Progress and monitoring opportunities of skid resistance in road transport: A critical review and road sensors. Remote Sens. 2021, 13, 3729. [Google Scholar] [CrossRef]
- Khalifeh, V.; Golroo, A.; Ovaici, K. Application of an Inexpensive Sensor in Calculating the International Roughness Index. J. Comput. Civ. Eng. 2018, 32, 04018022. [Google Scholar] [CrossRef]
- Yang, Y.B.; Xu, H.; Wang, Z.; Shi, K. Using vehicle–bridge contact spectra and residue to scan bridge’s modal properties with vehicle frequencies and road roughness eliminated. Struct. Control Health Monit. 2022, 29, e2968. [Google Scholar] [CrossRef]
- Múčka, P. International Roughness Index specifications around the world. Road Mater. Pavement Des. 2017, 18, 929–965. [Google Scholar] [CrossRef]
- Zamora Alvarez, E.J.; Ferris, J.B.; Scott, D.; Horn, E. Development of a discrete roughness index for longitudinal road profiles. Int. J. Pavement Eng. 2018, 19, 1043–1052. [Google Scholar] [CrossRef]
- Fares, A.; Zayed, T.; Abdelkhalek, S.; Faris, N.; Muddassir, M. Rutting measurement in asphalt pavements. Autom. Constr. 2024, 161, 105358. [Google Scholar] [CrossRef]
- Sayers, M.W.; Karamihas, S.M. The Little Book of Profiling: Basic Information about Measuring and Interpreting Road Profiles; University of Michigan Transportation Research Institute: Ann Arbor, MI, USA, 1998. [Google Scholar]
- Sayers, M.W.; Gillespie, T.D.; Paterson, W.D.O. The International Road Roughness Experiment: Establishing Correlation and a Calibration Standard for Measurements; World Bank Technical Paper No. 45; The World Bank: Washington, DC, USA, 1986. [Google Scholar]
- ASTM E1926-08; Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements. ASTM International: West Conshohocken, PA, USA, 2018.
- Zhang, Z.; Sun, C.; Bridgelall, R.; Sun, M. Road profile reconstruction using connected vehicle responses and wavelet analysis. J. Terramechanics 2018, 80, 21–30. [Google Scholar] [CrossRef]
- Schafer, R.W. What is a Savitzky-Golay filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Boonsiripant, S.; Athan, C.; Jedwanna, K.; Lertworawanich, P.; Sawangsuriya, A. Comparative analysis of deep neural networks and graph convolutional networks for road surface condition prediction. Sustainability 2024, 16, 9805. [Google Scholar] [CrossRef]
- Chaudhary, P.; Aggarwal, V.; Chopra, T. Predicting International Roughness Index (IRI) in Tier 2 Cities: A Machine Learning Approach. In Proceedings of the International Conference on Smart Infrastructure and Construction; Springer: Singapore, 2023; pp. 105–113. [Google Scholar] [CrossRef]
- Alnaqbi, A.; Zeiada, W.; Al-Khateeb, G.G. Machine learning modeling of pavement performance and IRI prediction in flexible pavement. Innov. Infrastruct. Solut. 2024, 9, 385. [Google Scholar] [CrossRef]
- Taylor, M.; Williams, S. Long-term performance of geosynthetic-reinforced flexible pavements under heavy traffic loading. Road Mater. Pavement Des. 2024, 25, 2343087. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, L. Co-location decision tree for enhancing decision-making of pavement maintenance and rehabilitation. Transp. Res. Part C 2012, 21, 287–305. [Google Scholar] [CrossRef]
- Sayers, M.W. Guidelines for Conducting and Calibrating Road Roughness Measurements; University of Michigan Transportation Research Institute: Ann Arbor, MI, USA, 1986. [Google Scholar]
- Sayers, M. On the Calculation of International Roughness Index from Longitudinal Road Profile. Transp. Res. Rec. 1995, 1501, 1–12. [Google Scholar]
- Mirtabar, Z.; Golroo, A.; Mahmoudzadeh, A.; Barazandeh, F. Development of a crowdsourcing-based system for computing the international roughness index. Int. J. Pavement Eng. 2022, 23, 489–498. [Google Scholar] [CrossRef]
- Prosser-Contreras, M.; Atencio, E.; Muñoz La Rivera, F.; Herrera, R.F. Use of unmanned aerial vehicles (UAVs) and photogrammetry to obtain the international roughness index (IRI) on roads. Appl. Sci. 2020, 10, 8788. [Google Scholar] [CrossRef]
- Seraj, F.; Van Der Zwaag, B.J.; Dilo, A.; Luarasi, T.; Havinga, P. RoADS: A Road Pavement Monitoring System for Anomaly Detection Using Smart Phones. In Big Data Analytics in the Social and Ubiquitous Context; Atzmueller, M., Chin, A., Janssen, F., Schweizer, I., Trattner, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 128–146. [Google Scholar] [CrossRef]
- Alessandroni, G.; Carini, A.; Lattanzi, E.; Freschi, V.; Bogliolo, A. A study on the influence of speed on road roughness sensing: The SmartRoadSense case. Sensors 2017, 17, 305. [Google Scholar] [CrossRef] [PubMed]
- Sattar, S.; Li, S.; Chapman, M. Road surface monitoring using smartphone sensors: A review. Sensors 2018, 18, 3845. [Google Scholar] [CrossRef]
- Eriksson, J.; Girod, L.; Hull, B.; Newton, R.; Madden, S.; Balakrishnan, H. The pothole patrol: Using a mobile sensor network for road surface monitoring. In Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, Breckenridge, CO, USA, 17–20 June 2008; pp. 29–39. [Google Scholar] [CrossRef]
- Masino, J.; Thumm, J.; Frey, M.; Gauterin, F. Learning from the crowd: Road infrastructure monitoring system. J. Traffic Transp. Eng. 2017, 4, 451–463. [Google Scholar] [CrossRef]
- El-Wakeel, A.S.; Li, J.; Noureldin, A.; Hassanein, H.S.; Zorba, N. Towards a practical crowdsensing system for road surface conditions monitoring. IEEE Internet Things J. 2018, 5, 4672–4685. [Google Scholar] [CrossRef]
- Rizelioglu, M.; Arslan, T.; Yigit, E.; Yazici, M. Using a bike as a probe vehicle: Experimental study to determine road roughness with piezoelectric sensors. J. Infrastruct. Syst. 2024, 30, 04024018. [Google Scholar] [CrossRef]
- Rizelioglu, M.; Yazici, M. New Approach to Determining the Roughness of Bicycle Roads. Transp. Res. Rec. 2023, 2678, 781–792. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Q.; Bo, Y.; Chen, Z.; Wang, C. Estimating the International Roughness Index of asphalt concrete pavement by response-based testing equipment and intelligent algorithms. Constr. Build. Mater. 2024, 433, 136659. [Google Scholar] [CrossRef]
- Du, Y.; Liu, C.; Liu, Y. Impact of vehicle speed on IRI calculation accuracy. J. Transp. Eng. Part B Pavements 2022, 148, 04021106. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Wang, W. International Roughness Index and a New Solution for Its Calculation. J. Transp. Eng. Part B Pavements 2018, 144, 06018002. [Google Scholar] [CrossRef]
- Zhao, B.; Nagayama, T.; Xue, K. Road profile estimation, and its numerical and experimental validation, by smartphone measurement of the dynamic responses of an ordinary vehicle. J. Sound Vib. 2019, 457, 92–117. [Google Scholar] [CrossRef]
- Thite, A.N. Development of a Refined Quarter Car Model for the Analysis of Discomfort due to Vibration. Adv. Acoust. Vib. 2012, 2012, 863061. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, Y.; Huang, W. A novel variational robust filter with Gaussian mixture model for unknown non-Gaussian noises. Measurement 2023, 221, 113417. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, C.; Chen, B. Progressive Gaussian approximation filter with adaptive measurement update. Measurement 2019, 148, 106898. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Huang, Y.; Li, Z.; Huang, Q. A 3D convolutional neural network based near-field acoustical holography method with sparse sampling rate on measuring surface. Measurement 2021, 177, 109297. [Google Scholar] [CrossRef]
- Parineh, H.; Sarvi, M.; Bagloee, S.A. Detecting emergency vehicles with 1D-CNN using Fourier processed audio signals. Measurement 2023, 223, 113784. [Google Scholar] [CrossRef]
- Liu, R.W.; Guo, Y.; Lu, Y.; Chui, K.T.; Gupta, B.B. Deep network-enabled haze visibility enhancement for visual IoT-driven intelligent transportation systems. IEEE Trans. Ind. Inform. 2022, 19, 1581–1591. [Google Scholar] [CrossRef]
- Al-Furjan, M.S.H.; Habibi, M.; Jung, D.W.; Sadeghi, S.; Safarpour, H.; Tounsi, A.; Chen, G. A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng. Comput. 2022, 38, 1679–1696. [Google Scholar] [CrossRef]
- King, B.-A. The Effect of Road Roughness on Traffic Speed and Road Safety; University of Southern Queensland: Toowoomba, Australia, 2014. [Google Scholar]
- Proakis, J.G. Digital Signal Processing: Principles Algorithms and Applications; Pearson Education: Delhi, India, 2001. [Google Scholar]
- Haigermoser, A.; Luber, B.; Rauh, J.; Gräfe, G. Road and track irregularities: Measurement, assessment and simulation. Veh. Syst. Dyn. 2015, 53, 878–957. [Google Scholar] [CrossRef]
- Agurla, M.; Lin, S. Long-Term Pavement Performance Automated Faulting Measurement; United States Federal Highway Administration: Washington, DC, USA, 2015. [Google Scholar]
- Roynard, X.; Deschaud, J.-E.; Goulette, F. Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification. Int. J. Robot. Res. 2018, 37, 545–557. [Google Scholar] [CrossRef]
- Shtayat, A.; Moridpour, S.; Best, B.; Daoud, H. Application of noise-cancelling and smoothing techniques in road pavement vibration monitoring data. Int. J. Transp. Sci. Technol. 2024, 14, 110–119. [Google Scholar] [CrossRef]
- Meng, X.; Tian, H.; Chen, X.; Jiang, X.; Wang, P.; Wei, T.; Cai, G. Numerical simulation of combustion surface regression based on Butterworth filter in hybrid rocket motor. Acta Astronaut. 2023, 202, 400–410. [Google Scholar] [CrossRef]
- Abdullah, L.; Singh, S.S.K.; Abdullah, S.; Azman, A.H.; Ariffin, A.K.; Kong, Y.S. The needs of power spectral density in fatigue life prediction of heavy vehicle leaf spring. J. Mech. Sci. Technol. 2020, 34, 2341–2346. [Google Scholar] [CrossRef]
- Gutiérrez, C.A.; Harrison, W.; Rice, M.; Jensen, B.; Norman, K.; Redd, B.; Twitchell, A.; Cardenas-Juarez, M. Envelope distribution and Doppler spectrum of V2V channels at 5.9 GHz in mountainous roads. Veh. Commun. 2023, 39, 100570. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, D.; Fei, M.; Sørensen, H.; Ren, Y.; Mou, J. Application of GA-BPNN on estimating the flow rate of a centrifugal pump. Eng. Appl. Artif. Intell. 2023, 119, 105738. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, L. GIS and data mining to enhance pavement rehabilitation decision-making. J. Transp. Eng. 2010, 136, 332–341. [Google Scholar] [CrossRef]
- Sekban, D.M.; Yaylacı, E.U.; Özdemir, M.E.; Yaylacı, M.; Tounsi, A. Investigating Formability Behavior of Friction Stir-Welded High-Strength Shipbuilding Steel using Experimental, Finite Element, and Artificial Neural Network Methods. J. Mater. Eng. Perform. 2025, 34, 4942–4950. [Google Scholar] [CrossRef]
- Plati, C.; Armeni, A.; Kyriakou, C.; Asoniti, D. AI for Predicting Pavement Roughness in Road Monitoring and Maintenance. Infrastructures 2025, 10, 157. [Google Scholar] [CrossRef]
- Bral, S.; Kumar, P.P.; Chopra, T. Prediction of International Roughness Index Using CatBooster and Shap Values. Int. J. Pavement Res. Technol. 2024, 17, 518–533. [Google Scholar] [CrossRef]
- Chen, K.; Torbaghan, M.E.; Thom, N.; Faramarzi, A. Physics-guided neural network for predicting international roughness index on flexible pavements considering accuracy, uncertainty and stability. Eng. Appl. Artif. Intell. 2025, 142, 109922. [Google Scholar] [CrossRef]
- Pasupunuri, S.K.; Thom, N.; Li, L. Roughness Prediction of Jointed Plain Concrete Pavement Using Physics Informed Neural Networks. Transp. Res. Rec. 2024, 2678, 1734–1746. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Wang, Y.; Cai, Y.; Yuan, C. ImageNet-E: A New Dataset for Open-Vocabulary Object Detection and Classification. arXiv 2023, arXiv:2307.02457. [Google Scholar]
- Brščić, D.; Evans, R.W.; Rehm, M.; Kanda, T. Using a rotating 3D LiDAR on a mobile robot for estimation of person’s body angle and gender. Sensors 2020, 20, 3964. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS 2017); Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30, pp. 5998–6008. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A time Series Is Worth 64 Words: Long-Term Forecasting with Transformers. In Proceedings of the International Conference on Learning Rep-resentations (ICLR 2023), Kigali, Rwanda, 1–5 May 2023; Available online: https://openreview.net/forum?id=Jbdc0vTOcol (accessed on 21 December 2025).
- NVIDIA Corporation. Jetson Nano System-on-Module Data Sheet (Document No. DA-09366-001_v1.0). NVIDIA. 2020. Available online: https://developer.nvidia.com/embedded/jetson-nano (accessed on 22 December 2025).
- Intel Corporation. Intel NUC 11 Performance Kit NUC11PAHi7 Product Specifications; Intel: Santa Clara, CA, USA, 2021; Available online: https://www.intel.com/content/www/us/en/products/sku/205073/intel-nuc-11-performance-kit-nuc11pahi7/specifications.html (accessed on 22 December 2025).
- NVIDIA Corporation. Jetson Xavier NX System-on-Module Data Sheet (Document No. DA-09366-001). NVIDIA. 2020. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/ (accessed on 22 December 2025).
- Raspberry Pi Ltd. Raspberry Pi 4 Model B Datasheet (Release 1.1). Raspberry Pi. 2024. Available online: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf (accessed on 22 December 2025).
- STMicroelectronics. STM32H7 Series: Arm Cortex-M7 and Cortex-M4 MCUs (480 MHz) Data Sheet; STMicroelectronics: Geneva, Switzerland, 2023; Available online: https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html (accessed on 22 December 2025).






















| Performance Indicator | Parameter |
|---|---|
| Measurement Range | 200 mm |
| Standoff Distance | 200–400 mm |
| Nominal Standoff | 300 mm |
| Data/Sampling Frequency | 16 kHz |
| Frequency Response/Bandwidth | Typical 2 kHz |
| Data Update Rate | 16 kHz |
| Performance Indicator | Parameter |
|---|---|
| Maximum Measuring Distance | 100 m |
| Accuracy | <20 mm |
| Density of Point Cloud | 700,000 points/s |
| Vertical Field of View | −30.67°~+10.67° |
| Vertical Angular Resolution | 1.33° |
| Horizontal Field of View | 360° |
| Horizontal Angular Resolution | 0.08°~0.33° |
| Scanning Speed | 5 Hz~20 Hz |
| Data Number | Gaussian Filter Proposed | Gaussian CI Width | Moving Average Filter | Butterworth Filter | Kalman Filter | LTPP- Calculated Value | |
|---|---|---|---|---|---|---|---|
| (m/km) | (m/km) | (m/km) | (m/km) | (m/km) | (m/km) | ||
| 02501 | Left | 0.959 | 0.081 | 0.964 | 0.953 | 0.961 | 0.986 |
| Right | 0.861 | 0.073 | 0.879 | 0.84 | 0.863 | 0.908 | |
| 02502 | Left | 1.448 | 0.123 | 1.46 | 1.426 | 1.451 | 1.516 |
| Right | 1.358 | 0.115 | 1.365 | 1.333 | 1.360 | 1.425 | |
| 02503 | Left | 3.139 | 0.267 | 3.119 | 3.107 | 3.132 | 3.186 |
| Right | 3.022 | 0.257 | 3.039 | 3.009 | 3.025 | 3.105 | |
| 02504 | Left | 1.543 | 0.131 | 1.551 | 1.579 | 1.546 | 1.587 |
| Right | 1.727 | 0.147 | 1.772 | 1.714 | 1.730 | 1.771 | |
| Data Number | Gaussian Filter Proposed | Gaussian CI Width | Moving Average Filter | Butterworth Filter | Kalman Filter | LTPP- Calculated Value | |
|---|---|---|---|---|---|---|---|
| (m/km) | (m/km) | (m/km) | (m/km) | (m/km) | (m/km) | ||
| 15001 | Left | 1.448 | 0.123 | 1.513 | 1.457 | 1.452 | 1.544 |
| Right | 1.198 | 0.102 | 1.215 | 1.146 | 1.201 | 1.206 | |
| 15002 | Left | 1.314 | 0.112 | 1.363 | 1.292 | 1.318 | 1.403 |
| Right | 1.203 | 0.102 | 1.252 | 1.17 | 1.207 | 1.271 | |
| 15003 | Left | 1.043 | 0.089 | 0.997 | 1.02 | 1.045 | 1.062 |
| Right | 0.881 | 0.075 | 0.922 | 0.87 | 0.884 | 0.92 | |
| 15004 | Left | 2.443 | 0.208 | 2.494 | 2.444 | 2.448 | 2.483 |
| Right | 2.786 | 0.273 | 2.836 | 2.781 | 2.790 | 2.819 | |
| Feature Type | Evaluation Metric | Gaussian | Moving Avg | Butterworth | Kalman |
|---|---|---|---|---|---|
| Pothole Cluster (68.8–74.8 m) | Amplitude Retention | 100% | 123.3% | 25.8% | 31.8% |
| Filtered Amplitude (mm) | 1.83 | 2.26 | 0.47 | 0.58 | |
| Wave Deformation (22.5–42.5 m) | Energy Retention | 100% | 192.0% | 26.5% | 33.4% |
| Filtered Energy (mm2) | 15,571 | 29,898 | 4121 | 5195 | |
| Transverse Crack (105.0–108.0 m) | Edge Sharpness Retention | 100% | 550.2% | 132.1% | 71.5% |
| Max Gradient (mm/m) | 0.023 | 0.126 | 0.030 | 0.016 | |
| Comprehensive | Weighted Score | 98.2 | 64.6 | 85.1 | 93.1 |
| Error Type | 02501 | 02502 | 02503 | 02504 | 15001 | 15002 | 15003 | 15004 | |
|---|---|---|---|---|---|---|---|---|---|
| absolute error (m∙km−1) | Left | 0.027 | 0.068 | 0.047 | 0.044 | 0.096 | 0.089 | 0.019 | 0.04 |
| Right | 0.047 | 0.067 | 0.083 | 0.044 | 0.008 | 0.068 | 0.039 | 0.033 | |
| relative error (%) | Left | 2.7 | 4.5 | 1.5 | 2.8 | 6.2 | 6.3 | 1.8 | 1.6 |
| Right | 5.2 | 4.7 | 2.7 | 2.5 | 0.7 | 5.4 | 4.2 | 1.2 | |
| Error Type | Proposed Gaussian Filter | Butterworth Filter | Moving Average Filter | Kalman Filter |
|---|---|---|---|---|
| MAE(m/km) | 0.051 | 0.054 | 0.058 | 0.048 |
| Mean relative loss (%) | 3.98 | 4.05 | 4.21 | 3.75 |
| Border error RMSE (mm) | 2.1 | 1.9 | 2.3 | 2.7 |
| Variation Case | Lower Cutoff (m) | Upper Cutoff (m) | MAE (m/km) | Relative Error (%) | ΔMAE from Baseline |
|---|---|---|---|---|---|
| −10% Lower | 1.17 | 29.4 | 0.052 | 4.1 | +0.001 |
| +10% Lower | 1.43 | 29.4 | 0.050 | 3.9 | −0.001 |
| −10% Upper | 1.3 | 26.5 | 0.051 | 4.0 | ±0.000 |
| +10% Upper | 1.3 | 32.3 | 0.049 | 3.8 | −0.002 |
| Baseline | 1.3 | 29.4 | 0.051 | 3.98 | Reference |
| Level | Excellent | Good | Average | Fair | Poor |
|---|---|---|---|---|---|
| IRI (m/km) | <3.1 | 3.1 ~ 4.5 | 4.5 ~ 5.4 | 5.4 ~ 6.2 | >6.2 |
| Sampling Interval/Cutoff Wavelength | 1.3 m | 29.4 m |
|---|---|---|
| 25 mm | 26 | 588 |
| 150 mm | 4.33 | 98 |
| Datasets | Sampling Interval | Methods | MAE (m/km) | RMSE (m/km) | R2 | Inference (s/km) | Speed Ratio |
|---|---|---|---|---|---|---|---|
| LTPP 0250X | 25 mm | Gaussian | 0.051 | 0.063 | 0.9989 | 0.071 | 1.0× |
| PatchTST | 0.046 | 0.058 | 0.9991 | 0.342 | 4.82× | ||
| Moving Average | 0.058 | 0.071 | 0.9984 | 0.053 | 0.75× | ||
| Butterworth | 0.054 | 0.068 | 0.9985 | 0.089 | 1.25× | ||
| Kalman | 0.048 | 0.061 | 0.9988 | 0.124 | 1.75× | ||
| LTPP 1500X | 150 mm | Gaussian | 0.048 | 0.059 | 0.9991 | 0.068 | 1.0× |
| PatchTST | 0.052 | 0.064 | 0.9989 | 0.337 | 4.96× | ||
| Moving Average | 0.062 | 0.078 | 0.9978 | 0.051 | 0.75× | ||
| Butterworth | 0.056 | 0.069 | 0.9982 | 0.085 | 1.25× | ||
| Kalman | 0.051 | 0.063 | 0.9987 | 0.119 | 1.75× |
| Metric | Gaussian Filter | PatchTST | Moving Avg | Butterworth | Kalman Filter |
|---|---|---|---|---|---|
| Training Time | None | 3.7 h | None | None | Tuning only |
| Model Size | N/A | 2.8 MB | N/A | N/A | N/A |
| Inference Speed | 0.071 s/km | 0.342 s/km | 0.053 s/km | 0.089 s/km | 0.124 s/km |
| Memory Usage | <45 MB | 1.2 GB | <32 MB | <58 MB | <95 MB |
| Hardware | CPU only | GPU recommended | CPU only | CPU only | CPU only |
| Platform | Specs | Gaussian Filter | PatchTST | Status | Platform |
|---|---|---|---|---|---|
| Jetson Nano | 4 GB RAM, 128-core Maxwell GPU | ✓ 0.089 s/km | ✗ OOM (≥6 GB needed) | Gaussian only | Jetson Nano |
| Raspberry Pi 4B | 8 GB RAM, Cortex-A72 @ 1.5 GHz | ✓ 0.215 s/km | ✗ 12.3 s/km (CPU) | Gaussian only | Raspberry Pi 4B |
| Intel NUC 11 | 16 GB RAM, i7-1165G7 @ 2.8 GHz | ✓ 0.073 s/km | ✓ 2.8 s/km (CPU) | Gaussian preferred | Intel NUC 11 |
| Jetson Xavier NX | 8 GB RAM, 384-core Volta GPU | ✓ 0.071 s/km | ✓ 0.45 s/km | Both viable | Jetson Xavier NX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhou, G.; Gao, H.; Cai, Y.; Guo, J.; Zhao, X. A Filter Method for Vehicle-Based Moving LiDAR Point Cloud Data for Removing IRI-Insensitive Components of Longitudinal Profile. Remote Sens. 2026, 18, 240. https://doi.org/10.3390/rs18020240
Zhou G, Gao H, Cai Y, Guo J, Zhao X. A Filter Method for Vehicle-Based Moving LiDAR Point Cloud Data for Removing IRI-Insensitive Components of Longitudinal Profile. Remote Sensing. 2026; 18(2):240. https://doi.org/10.3390/rs18020240
Chicago/Turabian StyleZhou, Guoqing, Hanwen Gao, Yufu Cai, Jiahao Guo, and Xuesong Zhao. 2026. "A Filter Method for Vehicle-Based Moving LiDAR Point Cloud Data for Removing IRI-Insensitive Components of Longitudinal Profile" Remote Sensing 18, no. 2: 240. https://doi.org/10.3390/rs18020240
APA StyleZhou, G., Gao, H., Cai, Y., Guo, J., & Zhao, X. (2026). A Filter Method for Vehicle-Based Moving LiDAR Point Cloud Data for Removing IRI-Insensitive Components of Longitudinal Profile. Remote Sensing, 18(2), 240. https://doi.org/10.3390/rs18020240

