Sea Ice Classification with GaoFen-3 Fully Polarimetric SAR and Landsat Optical Data
Highlights
- This study proposes a Global-Local enhanced Deformable Convolution Network (GLDCN), which achieves efficient long-range semantic modeling through a dynamic offset mechanism.
- The designed Adaptive Channel Attention Module (ACAM) effectively addresses the cross-modal fusion challenge between optical and SAR data through an adaptive weighting mechanism, thereby reducing misclassification among easily confusable categories.
- The GLDCN balances computational efficiency and modeling capability, significantly enhancing the extraction of features such as sea ice edges and textures.
- ACAM demonstrates the effectiveness of the multimodal fusion strategy, which not only substantially improves sea ice classification accuracy but also exhibits robust generalization capability.
Abstract
1. Introduction
2. Geographical Scope and Dataset
2.1. The Sea of Okhotsk
2.2. GaoFen-3 SAR Data
2.3. Landsat Optical Data
2.4. The Extraction of Polarimetric Information from SAR Data
2.5. Multi-Source Remote Sensing Dataset
3. Method
3.1. Backbone
3.1.1. Basic Block
3.1.2. Stem and Downsampling Layers
3.2. Fusion
3.3. Decoder
4. Experimental Results
4.1. Evaluation Metrics System
- : True Positives for the n-th class
- : True Negatives for the n-th class
- : False Positives for the n-th class
- : False Negatives for the n-th class
- N: Number of categories
4.2. Comparison of Methods
4.3. Comparison Experiments on the Fusion Module
4.4. Ablation Experiments on Data
- Group 1: Single-polarization SAR data (HH)
- Group 2: Full-polarization SAR data (HH/HV/VV)
- Group 3: All SAR information (HH/HV/VV + typical polarization features)
- Group 4: Optical data
- Group 5: Fusion of all SAR information and optical data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Q.; Wang, J.; Beletsky, D.; Overland, J.; Ikeda, M.; Wan, L. Accelerated decline of summer Arctic sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environ. Res. Lett. 2021, 16, 034015. [Google Scholar] [CrossRef]
- Liu, Z.; Risi, C.; Codron, F.; He, X.; Poulsen, C.; Wei, Z.; Chen, D.; Li, S.; Bowen, G. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nat. Commun. 2021, 12, 1519. [Google Scholar] [CrossRef]
- Zhang, F.; Lei, R.; Zhai, M.; Pang, X.; Li, N. The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: Case study in 2020. Cryosphere 2023, 17, 4609–4628. [Google Scholar] [CrossRef]
- He, L.; He, X.; Hui, F.; Ye, Y.; Zhang, T.; Cheng, X. Investigation of Polarimetric Decomposition for Arctic Summer Sea Ice Classification Using Gaofen-3 Fully Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3904–3915. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Shokr, M.; Mi, C.; Li, X.; Cheng, X.; Hui, F. Deep Learning Based Sea Ice Classification with Gaofen-3 Fully Polarimetric SAR Data. Remote Sens. 2021, 13, 1452. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Zhang, J. Fusion of SAR and optical image for sea ice Extraction. J. Ocean. Univ. China 2021, 20, 1440–1450. [Google Scholar] [CrossRef]
- Zhao, L.; Xie, T.; Perrie, W.; Yang, J. Deep-Learning-Based Sea Ice Classification with Sentinel-1 and AMSR-2 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5514–5525. [Google Scholar] [CrossRef]
- Wiehle, S.; Murashkin, D.; Frost, A.; König, C.; König, T. Sea Ice Classification Using Combined Sentinel-1 and Sentinel-3 Data. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 102–106. [Google Scholar] [CrossRef]
- Wu, G.; Yang, X.; Liang, H.; Luo, J.; Lang, W. PID Controllers Guided Multitask Sea Ice Inversion Approach of SAR and Amsr-2 Images Based on Convolutional Neural Network. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 61–64. [Google Scholar] [CrossRef]
- Boulze, H.; Korosov, A.; Brajard, J. Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional Neural Networks. Remote Sens. 2020, 12, 2165. [Google Scholar] [CrossRef]
- Xu, Y.; Scott, K.A. Sea ice and open water classification of sar imagery using cnn-based transfer learning. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3262–3265. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Hu, Y.; Chu, Q.; Liu, L. An Improved Sea Ice Classification Algorithm with Gaofen-3 Dual-Polarization SAR Data Based on Deep Convolutional Neural Networks. Remote Sens. 2022, 14, 906. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, L.; Li, J.; Zhao, Y. Semantic Segmentation of Sea Ice Based on U-net Network Modification. In Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, 5–9 December 2022; pp. 1151–1156. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, H.; Liu, B.; Li, X. Sea Ice and Open Water Classification of SAR Images Using a Deep Learning Model. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3051–3054. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Yang, X.; Xu, H. Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4010205. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhou, X.; Chu, Q.; Yin, X.; Li, G.; Dai, X.; Hu, S.; Jin, F. CNN and Transformer Fusion Network for Sea Ice Classification Using GaoFen-3 Polarimetric SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18898–18914. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Shokr, M.; Dabboor, M. Polarimetric SAR Applications of Sea Ice: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6627–6641. [Google Scholar] [CrossRef]
- Yommy, A.S.; Liu, R.; Wu, S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; Volume 2, pp. 260–265. [Google Scholar] [CrossRef]
- Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. B 1950, 45, 255–282. [Google Scholar] [CrossRef]
- Wang, W.; Dai, J.; Chen, Z.; Huang, Z.; Li, Z.; Zhu, X.; Hu, X.; Lu, T.; Lu, L.; Li, H.; et al. InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2022; pp. 14408–14419. [Google Scholar]
- Ba, J.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Virtual, 11–17 October 2021; pp. 9992–10002. [Google Scholar]
- Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified Perceptual Parsing for Scene Understanding. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, X.; Yin, Z.; Yang, Z. Deeplabv3 plus-net for Image Semantic Segmentation with Channel Compression. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020; pp. 1320–1324. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2016; pp. 6230–6239. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jägersand, M. U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Howard, A.G.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27–28 October 2019; pp. 1314–1324. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions. arXiv 2021, arXiv:2102.12122. [Google Scholar] [CrossRef]
- Peng, Z.; Dong, L.; Bao, H.; Ye, Q.; Wei, F. BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers. arXiv 2022, arXiv:2208.06366. [Google Scholar]
- Ma, X.; Zhang, X.; Pun, M.O.; Liu, M. A Multilevel Multimodal Fusion Transformer for Remote Sensing Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5403215. [Google Scholar] [CrossRef]
- Liu, S.; Li, F.; Zhang, H.; Yang, X.; Qi, X.; Su, H.; Zhu, J.; Zhang, L. DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR. arXiv 2022, arXiv:2201.12329. [Google Scholar] [CrossRef]
















| Model | CPA | PA | mIoU | Kappa | |||
|---|---|---|---|---|---|---|---|
| OW | NI | YI | MYI | ||||
| FCN | 69.02 | 82.87 | 84.86 | 91.02 | 86.38 | 70.96 | 79.55 |
| Deeplabv3+ | 77.07 | 84.55 | 86.41 | 91.00 | 87.56 | 73.32 | 81.36 |
| PSPNet | 66.81 | 79.73 | 85.17 | 91.45 | 85.95 | 70.14 | 78.81 |
| U2Net | 88.62 | 88.26 | 92.62 | 94.50 | 92.33 | 83.64 | 88.49 |
| MobileNetV3 | 71.42 | 81.14 | 83.37 | 88.91 | 84.74 | 68.53 | 77.13 |
| Swin | 89.46 | 84.34 | 87.65 | 90.85 | 88.35 | 78.90 | 82.50 |
| PVT | 92.56 | 87.11 | 87.38 | 94.84 | 90.54 | 82.30 | 85.79 |
| BEiT2 | 84.34 | 83.41 | 89.93 | 91.45 | 89.02 | 78.02 | 83.50 |
| InternImage | 94.57 | 90.36 | 94.02 | 95.84 | 94.04 | 87.59 | 91.05 |
| Ours | 94.45 | 92.13 | 94.66 | 96.31 | 94.81 | 88.94 | 92.21 |
| Model | Parameters | FLOPs | Model | Parameters | FLOPs |
|---|---|---|---|---|---|
| U2Net | 44.06 M | 29.42 G | BEiT2 | 323.66 M | 68.29 G |
| Swin | 90.07 M | 17.76 G | InternImage | 95.98 M | 17.11 G |
| PVT | 62.42 M | 53.33 G | Ours | 102.76 M | 17.51 G |
| Model | CPA | PA | mIoU | Kappa | |||
|---|---|---|---|---|---|---|---|
| OW | NI | YI | MYI | ||||
| Baseline | 94.45 | 92.13 | 94.66 | 96.31 | 94.81 | 88.94 | 92.21 |
| SFF | 94.14 | 92.16 | 94.92 | 96.92 | 95.14 | 89.64 | 92.71 |
| DAB | 94.38 | 91.79 | 95.38 | 97.09 | 95.31 | 90.20 | 92.95 |
| Conv | 95.38 | 91.83 | 95.48 | 96.70 | 95.23 | 89.77 | 92.84 |
| ACAM | 95.58 | 93.27 | 96.19 | 97.22 | 95.99 | 91.30 | 93.99 |
| Model | CPA | PA | mIoU | Kappa | |||
|---|---|---|---|---|---|---|---|
| OW | NI | YI | MYI | ||||
| SAR: HH | 74.95 | 82.83 | 81.92 | 89.94 | 85.11 | 71.55 | 77.58 |
| SAR: HH/HV/VV | 85.01 | 87.18 | 91.79 | 95.10 | 91.95 | 82.06 | 87.89 |
| All SAR information | 88.84 | 85.73 | 92.81 | 94.88 | 92.07 | 82.67 | 88.08 |
| Optical | 89.58 | 89.35 | 92.11 | 94.69 | 92.51 | 83.84 | 88.76 |
| SAR+Optical | 95.58 | 93.27 | 96.19 | 97.22 | 95.99 | 91.30 | 93.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jin, F.; Zhang, W.; Yin, X.; Zhang, J.; Chu, Q.; Li, G.; Hu, S. Sea Ice Classification with GaoFen-3 Fully Polarimetric SAR and Landsat Optical Data. Remote Sens. 2026, 18, 74. https://doi.org/10.3390/rs18010074
Jin F, Zhang W, Yin X, Zhang J, Chu Q, Li G, Hu S. Sea Ice Classification with GaoFen-3 Fully Polarimetric SAR and Landsat Optical Data. Remote Sensing. 2026; 18(1):74. https://doi.org/10.3390/rs18010074
Chicago/Turabian StyleJin, Fukun, Wenyi Zhang, Xiaoyi Yin, Jiande Zhang, Qingwei Chu, Guangzuo Li, and Suo Hu. 2026. "Sea Ice Classification with GaoFen-3 Fully Polarimetric SAR and Landsat Optical Data" Remote Sensing 18, no. 1: 74. https://doi.org/10.3390/rs18010074
APA StyleJin, F., Zhang, W., Yin, X., Zhang, J., Chu, Q., Li, G., & Hu, S. (2026). Sea Ice Classification with GaoFen-3 Fully Polarimetric SAR and Landsat Optical Data. Remote Sensing, 18(1), 74. https://doi.org/10.3390/rs18010074
