YOLOv11-SAFM: Enhancing Landslide Detection in Complex Mountainous Terrain Through Spatial Feature Adaptation
Highlights
- YOLOv11-SAFM integrates a Spatially Adaptive Feature Modulation (SAFM) module, optimized MPDIoU bounding box regression loss, and a multi-scale training strategy, significantly improving small-scale landslide detection under complex mountainous conditions.
- Compared with Mask R-CNN and YOLOv8, the model shows notable improvements in precision, recall, F1-score, and mAP@0.5 for small landslide detection.
- The SAFM module and MPDIoU loss enhance feature representation and localization accuracy, enabling robust and efficient automatic landslide detection.
- YOLOv11-SAFM has strong potential for application in geohazard monitoring and early warning systems in complex plateau environments.
Abstract
1. Introduction
- (1)
- To construct a high-quality landslide sample dataset by incorporating remote sensing imagery from the Zhaotong and Bijie regions, covering typical mountainous geomorphological features and providing abundant samples for model training and evaluation;
- (2)
- To embed a SAFM attention module that strengthens the model’s responsiveness to landslide spatial distributions, thereby improving detection in regions with subtle texture differences and high background complexity;
- (3)
- To employ a multi-scale training strategy and an optimized loss function, enhancing detection accuracy across varying landslide scales and improving boundary regression for finer detail capture.
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Basic YOLOv11 Model
3.2. Improved YOLOv11 Model: YOLOv11-SAFM
3.2.1. Loss Function
3.2.2. Introduction of the Spatial Adaptive Feature Modulation (SAFM) Module
3.2.3. Multi-Scale Training Strategy
4. Results
4.1. Experimental Setup
4.2. Evaluation Metrics
4.3. Experimental Results
4.3.1. Landslide Detection Results
4.3.2. Comparing Different Detection Models
4.3.3. Heatmap Visualization Analysis
4.3.4. Landslide Detection Results in Zhaotong
5. Discussion
5.1. Module Effectiveness Analysis
5.2. Limitations and Future Challenges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Song, D.Q.; Du, Y.M.; Dong, L.H. Investigation on the spatial distribution of landslides in Sichuan Province, southwest China. Geomat. Nat. Hazards Risk 2023, 14, 2232085. [Google Scholar] [CrossRef]
- Cheng, Z.; Gong, W.P.; Jaboyedoff, M.; Chen, J.; Derron, M.H.; Zhao, F.M. Landslide Identification in UAV Images Through Recognition of Landslide Boundaries and Ground Surface Cracks. Remote Sens. 2025, 17, 1900. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Pang, H.L.; Li, Y.Y.; Fan, L.; Wei, S.J.; Yuan, Z.W.; Fang, Y.Q. Applications and Advancements of Spaceborne InSAR in Landslide Monitoring and Susceptibility Mapping: A Systematic Review. Remote Sens. 2025, 17, 999. [Google Scholar] [CrossRef]
- Wen, T.; Chen, N.S.; Huang, D.X.; Wang, Y.K. A medium-sized landslide leads to a large disaster in Zhenxiong, Yunnan, China: Characteristics, mechanism and motion process. Landslides 2025, 22, 3365–3383. [Google Scholar] [CrossRef]
- Chen, T.; Gao, X.; Liu, G.; Wang, C.; Zhao, Z.Y.; Dou, J.; Niu, R.Q.; Plaza, A.J. BisDeNet: A new lightweight deep learning-based framework for efficient landslide detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3648–3663. [Google Scholar] [CrossRef]
- Niu, C.Y.; Gao, O.Y.; Lu, W.J.; Liu, W.; Lai, T. Reg-SA-UNet++: A lightweight landslide detection network based on single-temporal images captured postlandslide. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9746–9759. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tabita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 northern Pakistan earthquake using SPOT 5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Huang, R.Q.; Li, W.L. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan earthquake, China. Bull. Eng. Geol. Environ. 2009, 68, 363–371. [Google Scholar] [CrossRef]
- Xue, Z.W.; Xu, C.; Zhang, Z.Q.; Feng, L.Y.; Li, H.; Zhang, H.R.; Zhu, D.J.; Sun, J.J.; Wang, P.; Li, L.; et al. Inventory of landslide relics in Zhenxiong County based on human-machine interactive visual interpretation, Yunnan Province, China. Front. Earth Sci. 2025, 12, 1518377. [Google Scholar] [CrossRef]
- Leshchinsky, B.A.; Olsen, M.J.; Tanyu, B.F. Contour Connection Method for automated identification and classification of landslide deposits. Comput. Geosci. 2015, 74, 27–38. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Zhu, C.H.; Hu, G.D. Time Series Prediction of Landslide Displacement Using SVM Model: Application to Baishuihe Landslide in Three Gorges Reservoir Area, China. Appl. Mech. Mater. 2012, 239–240, 1413–1420. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, K.L.; Zhou, C.; Ahmed, B. Establishment of Landslide Groundwater Level Prediction Model Based on GA-SVM and Influencing Factor Analysis. Sensors 2020, 20, 845. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Zhang, K.X.; Wu, X.L.; Niu, R.Q.; Yang, K.; Zhao, L.R. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ. Earth Sci. 2017, 76, 405. [Google Scholar] [CrossRef]
- Mezaal, M.R.; Pradhan, B. An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data. Catena 2018, 167, 147–159. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Brown, M.K.; Panter, K.; Onasch, C.M.; Simic, A.; Snyder, J. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: A case study in the Cuyahoga Valley National Park, Ohio. Landslides 2016, 13, 467–484. [Google Scholar] [CrossRef]
- Lu, H.; Ma, L.; Fu, X.; Liu, C.; Wang, Z.; Tang, M.; Li, N.W. Landslides Information Extraction Using Object-Oriented Image Analysis Paradigm Based on Deep Learning and Transfer Learning. Remote Sens. 2020, 12, 752. [Google Scholar] [CrossRef]
- Liu, T.; Chen, T.; Niu, R.Q.; Plaza, A. Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11417–11428. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Li, P.L.; Wang, Y.; Si, T.Z.; Ullah, K.; Han, W.; Wang, L.Z. MFFSP: Multi-scale feature fusion scene parsing network for landslides detection based on high-resolution satellite images. Eng. Appl. Artif. Intell. 2024, 127, 107554. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.Z.; Li, D.F.; Jia, J.R.; Yang, A.Q.; Zheng, W.F.; Yin, L.R. Conv-trans dual network for landslide detection of multi-channel optical remote sensing images. Front. Earth Sci. 2023, 11, 1182145. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Xu, Y.H.; Ghamisi, P.; Kopp, M.; Kreil, D. Landslide4Sense: Reference Benchmark Data and Deep Learning Models for Landslide Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5633017. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Gholamnia, K.; Ghamisi, P. The application of ResU-net and OBIA for landslide detection from multi-temporal Sentinel-2 images. Big Earth Data 2023, 7, 961–985. [Google Scholar] [CrossRef]
- Li, Z.H.; Shi, A.C.; Li, X.R.; Dou, J.; Li, S.J.; Chen, T.X.; Chen, T. Deep Learning-Based Landslide Recognition Incorporating Deformation Characteristics. Remote Sens. 2024, 16, 992. [Google Scholar] [CrossRef]
- Ji, S.P.; Yu, D.W.; Shen, C.Y.; Li, W.L.; Xu, Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Swathi, Y.; Challa, M. YOLOv8: Advancements and innovations in object detection. In Smart Trends in Computing and Communications. SmartCom 2024; Lecture Notes in Networks and Systems; Senjyu, T., So–In, C., Joshi, A., Eds.; Springer: Singapore, 2024; Volume 946, pp. 1–13. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, H.; Zhao, Y.; Shi, J. A Method for Constructing a Loss Function for Multi-Scale Object Detection Networks. Sensors 2025, 25, 1738. [Google Scholar] [CrossRef] [PubMed]
- Putra, H.A.A.; Arymurthy, A.M.; Chahyati, D. Enhancing Bounding Box Regression for Object Detection: Dimensional Angle Precision IoU-Loss. IEEE Access 2025, 13, 81029–81047. [Google Scholar] [CrossRef]
- Shi, S.H.; Fang, Q.; Xu, X. Joint Optimization Loss Function for Tiny Object Detection in Remote Sensing Images. Remote Sens. 2025, 17, 1476. [Google Scholar] [CrossRef]
- Ju, Y.Z.; Xu, Q.; Jin, S.C.; Li, W.L.; Su, Y.J.; Dong, X.J.; Guo, Q.H. Loess Landslide Detection Using Object Detection Algorithms in Northwest China. Remote Sens. 2022, 14, 1182. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.Z.; Zhao, K.; Liu, X.C.; Mu, J.Q.; Zhao, X.P. Partial convolution-simple attention mechanism-SegFormer: An accurate and robust model for landslide identification. Eng. Appl. Artif. Intell. 2025, 151, 110612. [Google Scholar] [CrossRef]
- Chandra, N.; Vaidya, H.; Satyam, N.; Tang, X.C.; Singh, S.; Meena, S.R. A Novel Multi-Layer Attention Boosted YOLOv10 Network for Landslide Mapping Using Remote Sensing Data. Trans. GIS 2025, 29, 70023. [Google Scholar] [CrossRef]
- Li, H.J.; Zhu, Y.; Xu, Q.; Tang, R.; Pu, C.H.; He, Y.S. Condition monitoring of heterogeneous landslide deformation in spatio-temporal domain using advanced graph attention network. Geom. Nat. Hazards Risk 2025, 16, 2519429. [Google Scholar] [CrossRef]
- Hou, H.Y.; Chen, M.X.; Tie, Y.B.; Li, W.L. A Universal Landslide Detection Method in Optical Remote Sensing Images Based on Improved YOLOX. Remote Sens. 2022, 14, 4939. [Google Scholar] [CrossRef]
- Chen, X.B.; Liu, C.; Wang, S.; Deng, X.P. LSI-YOLOv8: An Improved Rapid and High Accuracy Landslide Identification Model Based on YOLOv8 From Remote Sensing Images. IEEE Access 2024, 12, 97739–97751. [Google Scholar] [CrossRef]
- Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. arXiv 2019, arXiv:1911.11929. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Park, M.; Hwang, S.; Cho, H. BiRD: Bi-Directional Input Reuse Dataflow for Enhancing Depthwise Convolution Performance on Systolic Arrays. IEEE Trans. Comput. 2024, 73, 2708–2721. [Google Scholar] [CrossRef]
- Cao, J.L.; Pang, Y.W.; Han, J.G.; Li, X.L. Hierarchical Regression and Classification for Accurate Object Detection. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 2425–2439. [Google Scholar] [CrossRef]
- Qian, X.L.; Zhang, N.N.; Wang, W. Smooth GIoU Loss for Oriented Object Detection in Remote Sensing Images. Remote Sens. 2023, 15, 1259. [Google Scholar] [CrossRef]
- Yuan, D.; Shu, X.; Fan, N.N.; Chang, X.J.; Liu, Q.; He, Z.Y. Accurate bounding-box regression with distance-IoU loss for visual tracking. J. Vis. Commun. Image Represent. 2022, 83, 103428. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Wang, P.; Ren, D.W.; Liu, W.; Ye, R.G.; Hu, Q.H.; Zuo, W.M. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2022, 52, 8574–8586. [Google Scholar] [CrossRef]
- Ou, J.Y.; Shen, Y.J. Underwater Target Detection Based on Improved YOLOv7 Algorithm with BiFusion Neck Structure and MPDIoU Loss Function. IEEE Access 2024, 12, 105165–105177. [Google Scholar] [CrossRef]
- Sun, L.; Dong, J.; Tang, J.; Pan, J. Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 13144–13153. [Google Scholar] [CrossRef]
- Yang, S.L.; Liu, B.; Ren, Y.X.; Jiang, P. Unsupervised learning inversion of seismic velocity models based on a multi-scale strategy. Geophys. Prospect. 2025, 73, 471–486. [Google Scholar] [CrossRef]
- Xie, Y.L.; Ou, J.; Zhong, J.H.; Jiang, T.X.; Ma, T.S. Multi-scale feedback residual network for image super-resolution. Signal Image Video Process. 2025, 19, 635. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhu, X.B.; Qin, J.Y.; Xu, Y.; Cesar, R.M., Jr.; Yin, X.C. Multi-Scale Texture Fusion for Reference-Based Image Super-Resolution: New Dataset and Solution. Int. J. Comput. Vis. 2025, 133, 6971–6992. [Google Scholar] [CrossRef]
- Jiang, W.; Xi, J.; Li, Z.; Ding, M.; Yang, L.; Xie, D. Landslide Detection and Segmentation Using Mask R-CNN with Simulated Hard Samples. Geomat. Inf. Sci. Wuhan. Univ. 2023, 48, 1931–1942. [Google Scholar] [CrossRef]















| Dataset | Data Sources | Spatial Resolution | Images | Total Images | Number of Augmented Data |
|---|---|---|---|---|---|
| Landslide dataset | Sentinel-2 | 10 m | 272 samples of Zhaotong landslide | 1042 | 2352 |
| GF-2 | 1 m | ||||
| TripleSat | 1 m | 770 samples of Bijie landslide | |||
| Negative sample datasets | TripleSat | 1 m | 1000 | 1000 | 1000 |
| Train | Val | Test | Total | |
|---|---|---|---|---|
| Landslide images | 1646 | 354 | 352 | 2352 |
| Negative images | 700 | 150 | 150 | 1000 |
| Total | 2346 | 504 | 502 | 3352 |
| Hyper Parameters | Value |
|---|---|
| Epoch | 400 |
| Momentum | 0.937 |
| Initial learning rate | 0.01 |
| GPU mem | 5.3 |
| GFLOPs | 8.20 |
| Input image size | 256 × 256 |
| Weight decay | 0.0005 |
| Optimizer | SGD |
| Data enhancement strategy | Mosaic |
| Model | Precision (%) | Recall (%) | mAP0.5 (%) | F1 (%) |
|---|---|---|---|---|
| Mask R-CNN | 81.18 | 78.47 | 79.60 | 79.82 |
| YOLOv8 | 78.74 | 63.10 | 70.70 | 70.04 |
| YOLOv8-SAFM | 92.48 | 79.40 | 87.40 | 85.45 |
| YOLOv11 | 92.21 | 77.90 | 88.08 | 84.45 |
| YOLOv11-SAFM | 95.05 | 90.10 | 95.30 | 92.51 |
| YOLOv12 | 88.60 | 76.50 | 89.80 | 82.10 |
| Model | Precision (%) | Recall (%) | mAP0.5 (%) | F1 (%) |
|---|---|---|---|---|
| YOLOv11 | 92.21 | 77.90 | 88.08 | 84.45 |
| YOLOv11+MPDIoU | 92.33 | 83.21 | 90.71 | 87.51 |
| YOLOv11+MPDIoU+SAFM | 92.60 | 89.61 | 94.90 | 91.08 |
| YOLOv11+MPDIoU+SAFM+ Multi-scale feature fusion | 95.05 | 90.10 | 95.30 | 92.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, C.; Tang, B.-H.; Cai, F.; Li, M.; Fan, D. YOLOv11-SAFM: Enhancing Landslide Detection in Complex Mountainous Terrain Through Spatial Feature Adaptation. Remote Sens. 2026, 18, 24. https://doi.org/10.3390/rs18010024
Zhang C, Tang B-H, Cai F, Li M, Fan D. YOLOv11-SAFM: Enhancing Landslide Detection in Complex Mountainous Terrain Through Spatial Feature Adaptation. Remote Sensing. 2026; 18(1):24. https://doi.org/10.3390/rs18010024
Chicago/Turabian StyleZhang, Cheng, Bo-Hui Tang, Fangliang Cai, Menghua Li, and Dong Fan. 2026. "YOLOv11-SAFM: Enhancing Landslide Detection in Complex Mountainous Terrain Through Spatial Feature Adaptation" Remote Sensing 18, no. 1: 24. https://doi.org/10.3390/rs18010024
APA StyleZhang, C., Tang, B.-H., Cai, F., Li, M., & Fan, D. (2026). YOLOv11-SAFM: Enhancing Landslide Detection in Complex Mountainous Terrain Through Spatial Feature Adaptation. Remote Sensing, 18(1), 24. https://doi.org/10.3390/rs18010024

