Passive Microwave Imagers, Their Applications, and Benefits: A Review
Abstract
:1. Introduction
2. PMWI Applications and Impact Areas
2.1. Applications and Benefits of PMWIs
2.1.1. TCs and Hurricanes
2.1.2. Global Precipitation and Extreme Events
2.1.3. Fire Severity and Carbon Emission
2.1.4. NWP
2.1.5. Cryosphere
2.1.6. Sea Surface
2.1.7. Soil Moisture and Drought
2.2. Impact Areas of PMWIs Within the NWS
3. The Applications, Benefits, and Impacts of PMWIs on Society
4. Summary of Survey and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Survey on the Societal Value of PMWIs
- 1.
- Name: Your full name.
- 2.
- Email Address: Your email address for follow-up and further communication.
- 3.
- Workplace and Position: The organization where you work and your current job title.
- 4.
- Usage of PMWI Data: Specific types of PMWI data application(s) in your role.Categories:
- hurricane tracking
- precipitation monitoring
- ocean surface wind measurements
- cryosphere studies
- others
- 5.
- Importance Rating: On a scale from 1 to 10, rate the importance of PMWI data to your work or applications.
- 6.
- Applications: Describe the products or applications you create using this data.
- 7.
- Societal Impact: Discuss the societal impact of your work using PMWI data.
- 8.
- Measurement of Societal Impact: Explain how you quantify the societal benefits of your work (e.g., lives saved, economic benefits, cost savings).
- 9.
- Evidence of Impact: Provide evidence or data supporting the societal impact mentioned.
- 10.
- Supporting References: List any references that support your claims about the societal impact of PMWI data.
- 11.
- Limitations of PMWI Data: Identify any limitations you encounter with PMWI data and how these affect your products.
- 12.
- Suggestions for Improvement: Provide recommendations for enhancing PMWI data quality, accessibility, or other aspects in future developments.
References
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1, pp. 343–353. ISBN 978-3-030-24568-9. [Google Scholar]
- Thépaut, J.-N. Satellite Data Assimilation in Numerical Weather Prediction: An Overview; ECMWF: Reading, UK, 2003; pp. 75–94. [Google Scholar]
- Radio-Frequency Interference (RFI) Workshop. Available online: https://www.ecmwf.int/en/learning/workshops/radio-frequency-interference-rfi-workshop (accessed on 18 December 2024).
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G.J.; Kidd, C.; Kucera, P.A.; Kummerow, C.D.; Masunaga, H.; Petersen, W.A.; et al. Global Precipitation Measurements for Validating Climate Models. Atmos. Res. 2017, 197, 1–20. [Google Scholar] [CrossRef]
- Ghent, D.; Kaduk, J.; Remedios, J.; Balzter, H. Data Assimilation into Land Surface Models: The Implications for Climate Feedbacks. Int. J. Remote Sens. 2011, 32, 617–632. [Google Scholar] [CrossRef]
- Bommarito, J.J. DMSP Special Sensor Microwave Imager Sounder (SSMIS); Shiue, J.C., Ed.; SPIE: Orlando, FL, USA, 1993; Volume 1935, pp. 230–238. [Google Scholar]
- Kidd, C.; Barrett, E.C. The Use of Passive Microwave Imagery in Rainfall Monitoring. Remote Sens. Rev. 1990, 4, 415–450. [Google Scholar] [CrossRef]
- Oki, T.; Imaoka, K.; Kachi, M. AMSR Instruments on GCOM-W1/2: Concepts and Applications. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1363–1366. [Google Scholar]
- Mineart, G.M. The Evolution and Status of Requirements for Ocean Data Products from the Joint Polar Satellite System (JPSS). In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–8. [Google Scholar]
- Karouche, N.; Raju, G. Megha-Tropiques Satellite Mission: Sensors Performances. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XIV, Toulouse, France, 13 October 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7826, pp. 192–204. [Google Scholar]
- Ustin, S.L.; Middleton, E.M. Current and Near-Term Earth-Observing Environmental Satellites, Their Missions, Characteristics, Instruments, and Applications. Sensors 2024, 24, 3488. [Google Scholar] [CrossRef]
- WMO OSCAR|Observing Systems Capability Analysis and Review Tool–Home. Available online: https://tools.wmo.int/ (accessed on 3 January 2025).
- Hawkins, J.D.; Lee, T.F.; Turk, J.; Sampson, C.; Kent, J.; Richardson, K. Real-Time Internet Distribution of Satellite Products for Tropical Cyclone Reconnaissance. Bull. Am. Meteorol. Soc. 2001, 82, 567–578. [Google Scholar] [CrossRef]
- Cheung, A.A.; Slocum, C.J.; Knaff, J.A.; Razin, M.N. Documenting the Progressions of Secondary Eyewall Formations. Weather Forecast. 2024, 39, 19–40. [Google Scholar] [CrossRef]
- Tang, L.; Tian, Y.; Lin, X. Validation of Precipitation Retrievals over Land from Satellite-Based Passive Microwave Sensors. J. Geophys. Res. Atmos. 2014, 119, 4546–4567. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, T.; Ju, W.; Peng, Z.; Shi, J.; Rodríguez-Fernández, N.J.; Wigneron, J.-P.; Cosh, M.H.; Yang, K.; Lu, H.; et al. A Twenty-Year Dataset of Soil Moisture and Vegetation Optical Depth from AMSR-E/2 Measurements Using the Multi-Channel Collaborative Algorithm. Remote Sens. Environ. 2023, 292, 113595. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.Y.; Evans, J.P.; Parinussa, R.M.; van Dijk, A.I.J.M.; Yebra, M. Estimating Fire Severity and Carbon Emissions over Australian Tropical Savannahs Based on Passive Microwave Satellite Observations. Int. J. Remote Sens. 2018, 39, 6479–6498. [Google Scholar] [CrossRef]
- Lawrence, H.; Bormann, N.; Sandu, I.; Day, J.; Farnan, J.; Bauer, P. Use and Impact of Arctic Observations in the ECMWF Numerical Weather Prediction System. Q. J. R. Meteorol. Soc. 2019, 145, 3432–3454. [Google Scholar] [CrossRef]
- Panegrossi, G. Satellite Snowfall Retrieval and Machine Learning: Challenges, Advancements, and Future Perspectives. In Proceedings of the International Precipitation Working Group (IPWG), Tokyo, Japan, 15–18 July 2024. [Google Scholar]
- Frontmatter. Remote Sensing of the Cryosphere; Tedesco, M., Ed.; Wiley-Blackwell Cryosphere Science Series; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. i–xxiv. ISBN 978-1-118-36890-9. [Google Scholar]
- Rysman, J.-F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S. SLALOM: An All-Surface Snow Water Path Retrieval Algorithm for the GPM Microwave Imager. Remote Sens. 2018, 10, 1278. [Google Scholar] [CrossRef]
- Werapitiya, G.; McCoy, D.; Elsaesser, G.; Field, P.; Rahimi, S. Meteorology Modulates the Impact of GCM Horizontal Resolution on Underestimation of Midlatitude Ocean Wind Speeds. Geophys. Res. Lett. 2024, 51, e2024GL108512. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, H.; Wang, Z.; Yu, H.; Yin, X.; Liao, Q. Comparison of Wind Speeds from Spaceborne Microwave Radiometers with In Situ Observations and ECMWF Data over the Global Ocean. Remote Sens. 2018, 10, 425. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an Improved Soil Moisture Dataset by Blending Passive and Active Microwave Satellite-Based Retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef]
- Wentz, F.J.; Mattox, L.A.; Peteherych, S. New Algorithms for Microwave Measurements of Ocean Winds: Applications to Seasat and the Special Sensor Microwave Imager. J. Geophys. Res. Oceans 1986, 91, 2289–2307. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.T.C.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Kongoli, C.; Meng, H.; Dong, J.; Ferraro, R. Ground-Based Assessment of Snowfall Detection over Land Using Polarimetric High Frequency Microwave Measurements. Remote Sens. 2020, 12, 3441. [Google Scholar] [CrossRef]
- Okuyama, A.; Imaoka, K. Intercalibration of Advanced Microwave Scanning Radiometer-2 (AMSR2) Brightness Temperature. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4568–4577. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G.; Maggioni, V.; Chambon, P.; Oki, R. The Global Satellite Precipitation Constellation: Current Status and Future Requirements. Bull. Am. Meteorol. Soc. 2021, 102, E1844–E1861. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Karagali, I.; Kolbe, W.M.; Tonboe, R.T.; Pedersen, L.T. Impact of Microwave Observations on the Estimation of Arctic Sea Surface Temperatures. Remote Sens. Environ. 2024, 301, 113949. [Google Scholar] [CrossRef]
- Kasahara, M.; Kachi, M.; Inaoka, K.; Fujii, H.; Kubota, T.; Shimada, R.; Kojima, Y. Overview and Current Status of GOSAT-GW Mission and AMSR3 Instrument. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXIV, Online, 20 September 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11530, p. 1153007. [Google Scholar]
- Erwin, S. Space Force Orders New Weather Satellite from Ball Aerospace. Available online: https://spacenews.com/space-force-orders-new-weather-satellite-from-ball-aerospace/ (accessed on 9 January 2025).
- Snyder, D. Evaluation and Economic Value of Winter Weather Forecasts. Master’s Thesis, Purdue University, West Lafayette, Indiana, 2014. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Migliaccio, M.; Buono, A.; Alparone, M. Microwave Satellite Remote Sensing for a Sustainable Sea. Eur. J. Remote Sens. 2022, 55, 507–519. [Google Scholar] [CrossRef]
- Welker, C.; Faust, E. Tropical Cyclone-Related Socio-Economic Losses in the Western North Pacific Region. Nat. Hazards Earth Syst. Sci. 2013, 13, 115–124. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Kirschbaum, D.; Petersen, W.; Huffman, G.; Kidd, C.; Stocker, E.; Kakar, R. The Global Precipitation Measurement (GPM) Mission’s Scientific Achievements and Societal Contributions: Reviewing Four Years of Advanced Rain and Snow Observations. Q. J. R. Meteorol. Soc. 2018, 144, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Samsuddin, A.; Kaman, Z.K.; Husin, N.M. Socio-Economic Assessment on Flood Risk Impact: A Methodological Review Toward Environmental Sustainability. IOP Conf. Ser. Earth Environ. Sci. 2021, 943, 012010. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Joyce, R.; Nelkin, E.J.; Tan, J.; Braithwaite, D.; Hsu, K.; Kelley, O.A.; Nguyen, P.; Sorooshian, S.; et al. Algorithm Theoretical Basis Document (ATBD)-NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG) Version 07; NASA/GSFC: Greenbelt, MD, USA, 2023.
- Avenas, A.; Mouche, A.; Tandeo, P.; Piolle, J.-F.; Chavas, D.; Fablet, R.; Knaff, J.; Chapron, B. Reexamining the Estimation of Tropical Cyclone Radius of Maximum Wind from Outer Size with an Extensive Synthetic Aperture Radar Dataset. Mon. Weather Rev. 2023, 151, 3169–3189. [Google Scholar] [CrossRef]
- Sampson, C.R.; Schumacher, A.B.; Knaff, J.A.; DeMaria, M.; Fukada, E.M.; Sisko, C.A.; Roberts, D.P.; Winters, K.A.; Wilson, H.M. Objective Guidance for Use in Setting Tropical Cyclone Conditions of Readiness. Weather Forecast. 2012, 27, 1052–1060. [Google Scholar] [CrossRef]
- DeMaria, M.; Knaff, J.A.; Brennan, M.J.; Brown, D.; Knabb, R.D.; DeMaria, R.T.; Schumacher, A.; Lauer, C.A.; Roberts, D.P.; Sampson, C.R.; et al. Improvements to the Operational Tropical Cyclone Wind Speed Probability Model. Weather Forecast. 2013, 28, 586–602. [Google Scholar] [CrossRef]
- Sampson, C.R.; Knaff, J.A. A Consensus Forecast for Tropical Cyclone Gale Wind Radii. Weather Forecast. 2015, 30, 1397–1403. [Google Scholar] [CrossRef]
- Goni, G.; Demaria, M.; Knaff, J.; Sampson, C.; Ginis, I.; Bringas, F.; Mavume, A.; Lauer, C.; Lin, I.-I.; Ali, M.M.; et al. Applications of Satellite-Derived Ocean Measurements to Tropical Cyclone Intensity Forecasting. Oceanography 2009, 22, 190–197. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; Kucas, M.E.; Slocum, C.J.; Brennan, M.J.; Meissner, T.; Ricciardulli, L.; Mouche, A.; Reul, N.; Morris, M.; et al. Estimating Tropical Cyclone Surface Winds: Current Status, Emerging Technologies, Historical Evolution, and a Look to the Future. Trop. Cyclone Res. Rev. 2021, 10, 125–150. [Google Scholar] [CrossRef]
- Hauser, D.; Abdalla, S.; Ardhuin, F.; Bidlot, J.-R.; Bourassa, M.; Cotton, D.; Gommenginger, C.; Evers-King, H.; Johnsen, H.; Knaff, J.; et al. Satellite Remote Sensing of Surface Winds, Waves, and Currents: Where Are We Now? Surv. Geophys. 2023, 44, 1357–1446. [Google Scholar] [CrossRef]
- Wimmers, A.; Velden, C.; Cossuth, J.H. Using Deep Learning to Estimate Tropical Cyclone Intensity from Satellite Passive Microwave Imagery. Mon. Weather. Rev. 2019, 147, 2261–2282. [Google Scholar] [CrossRef]
- Jones, T.A.; Cecil, D.; DeMaria, M. Passive-Microwave-Enhanced Statistical Hurricane Intensity Prediction Scheme. Weather Forecast. 2006, 21, 613–635. [Google Scholar] [CrossRef]
- Razin, M.N.; Slocum, C.J.; Knaff, J.A.; Brown, P.J.; Bell, M.M. Tropical Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED). Bull. Am. Meteorol. Soc. 2023, 104, E1980–E1998. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J. An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins. Weather Forecast. 1999, 14, 326–337. [Google Scholar] [CrossRef]
- CIRA-Cooperative Institute for Research in the Atmosphere. Connecting Models and Observations. Available online: https://www.cira.colostate.edu/ (accessed on 18 December 2024).
- Meng, H.; Dong, J.; Ferraro, R.; Yan, B.; Zhao, L.; Kongoli, C.; Wang, N.-Y.; Zavodsky, B. A 1DVAR-Based Snowfall Rate Retrieval Algorithm for Passive Microwave Radiometers. J. Geophys. Res. Atmos. 2017, 122, 6520–6540. [Google Scholar] [CrossRef]
- Romanov, P. Global Multisensor Automated Satellite-Based Snow and Ice Mapping System (GMASI) for Cryosphere Monitoring. Remote Sens. Environ. 2017, 196, 42–55. [Google Scholar] [CrossRef]
- Ferraro, R.R. Special Sensor Microwave Imager Derived Global Rainfall Estimates for Climatological Applications. J. Geophys. Res. Atmos. 1997, 102, 16715–16735. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Weng, F.; Grody, N.C.; Zhao, L. Precipitation Characteristics over Land from the NOAA-15 AMSU Sensor. Geophys. Res. Lett. 2000, 27, 2669–2672. [Google Scholar] [CrossRef]
- Zeng, Z.; Gan, Y.; Kettner, A.J.; Yang, Q.; Zeng, C.; Brakenridge, G.R.; Hong, Y. Towards High Resolution Flood Monitoring: An Integrated Methodology Using Passive Microwave Brightness Temperatures and Sentinel Synthetic Aperture Radar Imagery. J. Hydrol. 2020, 582, 124377. [Google Scholar] [CrossRef]
- Bindlish, R.; Crow, W.T.; Jackson, T.J. Role of Passive Microwave Remote Sensing in Improving Flood Forecasts. IEEE Geosci. Remote Sens. Lett. 2009, 6, 112–116. [Google Scholar] [CrossRef]
- Petković, V.; Kummerow, C.D. Performance of the GPM Passive Microwave Retrieval in the Balkan Flood Event of 2014. J. Hydrometeorol. 2015, 16, 2501–2518. [Google Scholar] [CrossRef]
- Belabid, N.; Zhao, F.; Brocca, L.; Huang, Y.; Tan, Y. Near-Real-Time Flood Forecasting Based on Satellite Precipitation Products. Remote Sens. 2019, 11, 252. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Li, Z.; Tang, G.; Kirstetter, P.; Gao, S.; Li, J.-L.F.; Wen, Y.; Hong, Y. Evaluation of GPM IMERG and Its Constellations in Extreme Events over the Conterminous United States. J. Hydrol. 2022, 606, 127357. [Google Scholar] [CrossRef]
- Mroz, K.; Montopoli, M.; Battaglia, A.; Panegrossi, G.; Kirstetter, P.; Baldini, L. Cross Validation of Active and Passive Microwave Snowfall Products over the Continental United States. J. Hydrometeorol. 2021, 22, 1297–1315. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Chen, W.; Su, Y.; Li, D. A Simple Retrieval Method of Land Surface Temperature from AMSR-E Passive Microwave Data—A Case Study over Southern China during the Strong Snow Disaster of 2008. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 140–151. [Google Scholar] [CrossRef]
- Cecil, D.J.; Blankenship, C.B. Toward a Global Climatology of Severe Hailstorms as Estimated by Satellite Passive Microwave Imagers. J. Clim. 2012, 25, 687–703. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor Historical Climatology of Satellite-Derived Global Land Surface Moisture. J. Geophys. Res. Earth Surf. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Simon, M.; Plummer, S.; Fierens, F.; Hoelzemann, J.J.; Arino, O. Burnt Area Detection at Global Scale Using ATSR-2: The GLOBSCAR Products and Their Qualification. J. Geophys. Res. Atmos. 2004, 109, D14S02. [Google Scholar] [CrossRef]
- Weng, F.; Zhu, T.; Yan, B. Satellite Data Assimilation in Numerical Weather Prediction Models. Part II: Uses of Rain-Affected Radiances from Microwave Observations for Hurricane Vortex Analysis. J. Atmos. Sci. 2007, 64, 3910–3925. [Google Scholar] [CrossRef]
- Eyre, J.R.; Bell, W.; Cotton, J.; English, S.J.; Forsythe, M.; Healy, S.B.; Pavelin, E.G. Assimilation of Satellite Data in Numerical Weather Prediction. Part II: Recent Years. Q. J. R. Meteorol. Soc. 2022, 148, 521–556. [Google Scholar] [CrossRef]
- Pu, Z.; Yu, C.; Tallapragada, V.; Jin, J.; McCarty, W. The Impact of Assimilation of GPM Microwave Imager Clear-Sky Radiance on Numerical Simulations of Hurricanes Joaquin (2015) and Matthew (2016) with the HWRF Model. Mon. Weather Rev. 2019, 147, 175–198. [Google Scholar] [CrossRef]
- Bi, L.; Marshall, J.; Zaptocny, T.H.; Jung, J.; Morgan, M.C. Assessing the forecast impact of windsat/coriolis data in the NCEP GDAS/GFS. In Proceedings of the 11th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS) 2007, 87th AMS Annual Meeting, San Antonio, TX, USA, 14–18 January 2007. [Google Scholar]
- Ota, Y.; Derber, J.C.; Kalnay, E.; Miyoshi, T. Ensemble-Based Observation Impact Estimates Using the NCEP GFS. Tellus Dyn. Meteorol. Oceanogr. 2013, 65, 20038. [Google Scholar] [CrossRef]
- Aaboe, S.; Down, E.J.; Eastwood, S. Algorithm Theoretical Basis Document for the Global Sea-Ice Edge and Type Product; Norwegian Meteorological Institute: Blindern, Norway, 2021. [Google Scholar]
- Weng, F. Passive Microwave Remote Sensing of the Earth: For Meteorological Applications; Wiley Series in Atmospheric Physics and Remote Sensing; WILEY: Hoboken, NJ, USA, 2017; ISBN 978-3-527-33630-2. [Google Scholar]
- Comiso, J.C.; Nishio, F. Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I, and SMMR Data. J. Geophys. Res. Oceans 2008, 113, C02S07. [Google Scholar] [CrossRef]
- Donlon, C.; Galeazzi, C.; Midthassel, R.; Sallusti, M.; Triggianese, M.; Fiorelli, B.; De Paris, G.; Kornienko, A.; Khlystova, I. The Copernicus Imaging Microwave Radiometer (CIMR): Mission Overview and Status. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 989–992. [Google Scholar]
- Baordo, F.; Tonboe, R.; Howe, E. Algorithm Theoretical Basis Document for Global Sea Ice Concentration Level 2 and Level 3 2023. Available online: https://osisaf-hl.met.no/sites/osisaf-hl/files/baseline_document/osisaf_atbd_ice-conc_l2-3_v1p3.pdf (accessed on 18 December 2024).
- Lavergne, T.; Eastwood, S.; Teffah, Z.; Schyberg, H.; Breivik, L.-A. Sea Ice Motion from Low-Resolution Satellite Sensors: An Alternative Method and Its Validation in the Arctic. J. Geophys. Res. Oceans 2010, 115, C10032. [Google Scholar] [CrossRef]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite Measurements of Sea Surface Temperature Through Clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef]
- RSS. RSS CCMP Monthly 10 Meter Surface Winds Level 4 Version 3.1. PO.DAAC/JPL/NASA. 2024. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C2916529935-POCLOUD.html (accessed on 5 March 2025).
- Wentz, F. AMSR Ocean Algorithm, Version 2.; Remote Sensing Systems, 15 December 2000. Available online: https://images.remss.com/papers/rsstech/2000_121599A-1_Wentz_AMSR_Ocean_Algorithm_ATBD_Version2.pdf (accessed on 17 March 2025).
- Nielsen-Englyst, P.; Høyer, J.L.; Alerskans, E.; Pedersen, L.T.; Donlon, C. Impact of Channel Selection on SST Retrievals from Passive Microwave Observations. Remote Sens. Environ. 2021, 254, 112252. [Google Scholar] [CrossRef]
- Lipes, R.G. Description of SEASAT Radiometer Status and Results. J. Geophys. Res. Oceans 1982, 87, 3385–3395. [Google Scholar] [CrossRef]
- Milman, A.S.; Wilheit, T.T. Sea Surface Temperatures from the Scanning Multichannel Microwave Radiometer on Nimbus 7. J. Geophys. Res. Oceans 1985, 90, 11631–11641. [Google Scholar] [CrossRef]
- Wentz, F.J. A 17-Yr Climate Record of Environmental Parameters Derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Clim. 2015, 28, 6882–6902. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Draper, D.W.; Newell, D.A.; Wentz, F.J.; Krimchansky, S.; Skofronick-Jackson, G.M. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3452–3462. [Google Scholar] [CrossRef]
- Bidwell, S.W.; Flaming, G.M.; Durning, J.F.; Smith, E.A. The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument: Role, Performance, and Status. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005 IGARSS ’05, Seoul, Republic of Korea, 29 July 2005; Volume 1, p. 4. [Google Scholar]
- Chelton, D.B.; Wentz, F.J. Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather Prediction and Climate Research. Bull. Am. Meteorol. Soc. 2005, 86, 1097–1116. [Google Scholar] [CrossRef]
- Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T.; Ishido, Y.; Shibata, A.; Miura, M.; Inahata, H.; Spencer, R.W. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s Contribution to the EOS for Global Energy and Water Cycle Studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 184–194. [Google Scholar] [CrossRef]
- Alerskans, E.; Zinck, A.-S.P.; Nielsen-Englyst, P.; Høyer, J.L. Exploring Machine Learning Techniques to Retrieve Sea Surface Temperatures from Passive Microwave Measurements. Remote Sens. Environ. 2022, 281, 113220. [Google Scholar] [CrossRef]
- Alerskans, E.; Høyer, J.L.; Gentemann, C.L.; Pedersen, L.T.; Nielsen-Englyst, P.; Donlon, C. Construction of a Climate Data Record of Sea Surface Temperature from Passive Microwave Measurements. Remote Sens. Environ. 2020, 236, 111485. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Toudal Pedersen, L.; Gentemann, C.L.; Alerskans, E.; Block, T.; Donlon, C. Optimal Estimation of Sea Surface Temperature from AMSR-E. Remote Sens. 2018, 10, 229. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Meissner, T.; Wentz, F.J. Accuracy of Satellite Sea Surface Temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1009–1018. [Google Scholar] [CrossRef]
- Gentemann, C.L. Three Way Validation of MODIS and AMSR-E Sea Surface Temperatures. J. Geophys. Res. Oceans 2014, 119, 2583–2598. [Google Scholar] [CrossRef]
- May, J.; Rowley, C. COWVR/TEMPEST Surface State Parameter Retrievals. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 4084–4087. [Google Scholar]
- Alsweiss, S.; Jelenak, Z.; Chang, P.S. A Comparison between COWVR and WindSat Measurements for NOAA’s Applications. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 3977–3980. [Google Scholar]
- Santamaria-Artigas, A.; Mattar, C.; Wigneron, J.-P. Application of a Combined Optical–Passive Microwave Method to Retrieve Soil Moisture at Regional Scale Over Chile. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1493–1504. [Google Scholar] [CrossRef]
- Schmugge, T.J. Remote Sensing of Soil Moisture: Recent Advances. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 336–344. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Spencer, M.; Kim, Y.; Chan, S. The Soil Moisture Active/Passive (SMAP) Radar. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–5. [Google Scholar]
- Owe, M.; de Jeu, R.; Walker, J. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef]
- Van Der Velde, R.; Salama, M.S.; Pellarin, T.; Ofwono, M.; Ma, Y.; Su, Z. Long Term Soil Moisture Mapping over the Tibetan Plateau Using Special Sensor Microwave/Imager. Hydrol. Earth Syst. Sci. 2014, 18, 1323–1337. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil Moisture Retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Li, L.; Gaiser, P.W.; Gao, B.-C.; Bevilacqua, R.M.; Jackson, T.J.; Njoku, E.G.; Rudiger, C.; Calvet, J.-C.; Bindlish, R. WindSat Global Soil Moisture Retrieval and Validation. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2224–2241. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Wang, G.; Qiu, J.; Liao, W. Use of SMAP Soil Moisture and Fitting Methods in Improving GPM Estimation in Near Real Time. Remote Sens. 2019, 11, 368. [Google Scholar] [CrossRef]
- Lu, Z.; Chai, L.; Ye, Q.; Zhang, T. Reconstruction of Time-Series Soil Moisture from AMSR2 and SMOS Data by Using Recurrent Nonlinear Autoregressive Neural Networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 980–983. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Zohaib, M. Assessment of Merged Satellite Precipitation Datasets in Monitoring Meteorological Drought over Pakistan. Remote Sens. 2021, 13, 1662. [Google Scholar] [CrossRef]
- Zhao, L. NESDIS Five-Year Product Plan (NESDIS-PLN-1003.2). 2023. Available online: https://nesdis-prod.s3.amazonaws.com/2023-10/NESDIS-PLN-1003-2_NESDIS_FIVE-YEAR_PRODUCT_PLAN.pdf (accessed on 18 December 2024).
- Kummerow, C.; Hong, Y.; Olson, W.S.; Yang, S.; Adler, R.F.; McCollum, J.; Ferraro, R.; Petty, G.; Shin, D.-B.; Wilheit, T.T. The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors. J. Appl. Meteorol. Climatol. 2001, 40, 1801–1820. [Google Scholar] [CrossRef]
- NOAA Hurricane Costs. Available online: https://coast.noaa.gov/states/fast-facts/hurricane-costs.html (accessed on 18 December 2024).
- Bakkensen, L.A.; Mendelsohn, R.O. Global Tropical Cyclone Damages and Fatalities Under Climate Change: An Updated Assessment. In Hurricane Risk; Collins, J.M., Walsh, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1, pp. 179–197. ISBN 978-3-030-02402-4. [Google Scholar]
- Gulati, S.; Sampson, C.R. Economic Value of Tropical Cyclone Conditions of Readiness. Nat. Hazards 2021, 108, 1687–1700. [Google Scholar] [CrossRef]
- DeMaria, M.; Sampson, C.R.; Knaff, J.A.; Musgrave, K.D. Is Tropical Cyclone Intensity Guidance Improving? Bull. Am. Meteorol. Soc. 2014, 95, 387–398. [Google Scholar] [CrossRef]
- Masters, J. World Hammered by Record 50 Billion-Dollar Weather Disasters in 2020. Yale Climate Connections. Available online: http://yaleclimateconnections.org/2021/01/world-hammered-by-record-50-billion-dollar-weather-disasters-in-2020/ (accessed on 17 December 2024).
- Lyu, X.; Li, Z.; Li, X. Evaluation of GPM IMERG Satellite Precipitation Products in Event-Based Flood Modeling over the Sunshui River Basin in Southwestern China. Remote Sens. 2024, 16, 2333. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- NRL Monterey-TCWeb–Active. Available online: https://science.nrlmry.navy.mil/geoips/tcweb/active/ (accessed on 3 January 2025).
- Schumann, G.; Kirschbaum, D.; Anderson, E.; Rashid, K. Role of Earth Observation Data in Disaster Response and Recovery: From Science to Capacity Building. In Earth Science Satellite Applications: Current and Future Prospects; Hossain, F., Ed.; Springer Remote Sensing/Photogrammetry: Springer: Cham, Switzerland, 2016; pp. 119–146. ISBN 978-3-319-33438-7. [Google Scholar]
- Using the IMERG Long-Term Precipitation Dataset for Applications|NASA Global Precipitation Measurement Mission. Available online: https://gpm.nasa.gov/applications/using-imerg-long-term-precipitation-data-applications (accessed on 9 January 2025).
- Kirschbaum, D.B.; Huffman, G.J.; Adler, R.F.; Braun, S.; Garrett, K.; Jones, E.; McNally, A.; Skofronick-Jackson, G.; Stocker, E.; Wu, H.; et al. NASA’s Remotely Sensed Precipitation: A Reservoir for Applications Users. Bull. Am. Meteorol. Soc. 2017, 98, 1169–1184. [Google Scholar] [CrossRef]
- Hossein, F.; Biswas, N.; Ashraf, M.W.; Bhatti, A.Z. Growing More with Less Using Cell Phones and Satellite Data|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Growing-More-with-Less-Using-Cell-Phones-and-Data-Hossain-Biswas/1612f6ad553f7ff2afe8f376bc36ea3159c07f94 (accessed on 3 January 2025).
- Valle, D.; Clark, J. Conservation Efforts May Increase Malaria Burden in the Brazilian Amazon. PLoS ONE 2013, 8, e57519. [Google Scholar] [CrossRef] [PubMed]
- Zaitchik, B.; Feingold, B.J.; Valle, D.; Pan, W.K. Integrating Earth Observations to Support Malaria Risk Monitoring in the Amazon. IEEE Earthzine. 2024. Available online: https://earthzine.org/integrating-earth-observations-to-support-malaria-risk-monitoring-in-the-amazon/ (accessed on 8 January 2025).
- Obringer, R.; Bohrer, G.; Weinzierl, R.; Dodge, S.; Deppe, J.; Ward, M.; Brandes, D.; Kays, R.; Flack, A.; Wikelski, M. Track Annotation: Determining the Environmental Context of Movement Through the Air. In Aeroecology; Chilson, P.B., Frick, W.F., Kelly, J.F., Liechti, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 71–86. ISBN 978-3-319-68576-2. [Google Scholar]
- Allaire, M. Socio-Economic Impacts of Flooding: A Review of the Empirical Literature. Water Secur. 2018, 3, 18–26. [Google Scholar] [CrossRef]
- UK Government Shipping Fleet Statistics 2020. Dep. Transp. Tech. Rep. 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/967763/shipping-fleet-statistics-2020.pdf (accessed on 18 December 2024).
- World Shipping Council (WSC) World Shipping Council Containers Lost at Sea Report 2022 Update Published. Available online: https://www.worldshipping.org/news/world-shipping-council-containers-lost-at-sea-report-2022-update-published (accessed on 18 December 2024).
- Bahamas Maritime Authority. Report of the Investigation into the Sinking of the “MOL Comfort” in the Indian Ocean; Bahamas Maritime Authority: London, UK, 2013. [Google Scholar]
- von Schuckmann, K.; Le Traon, P.-Y.; Smith (Chair), N.; Pascual, A.; Djavidnia, S.; Gattuso, J.-P.; Grégoire, M.; Aaboe, S.; Alari, V.; Alexander, B.E.; et al. Copernicus Marine Service Ocean State Report, Issue 5. J. Oper. Oceanogr. 2021, 14, 1–185. [Google Scholar] [CrossRef]
- Caires, S.; Marseille, G.-J.; Verlaan, M.; Stoffelen, A. North Sea Wave Analysis Using Data Assimilation and Mesoscale Model Forcing Winds. J. Waterw. Port Coast. Ocean Eng. 2018, 144, 04018005. [Google Scholar] [CrossRef]
- Melet, A.; Teatini, P.; Le Cozannet, G.; Jamet, C.; Conversi, A.; Benveniste, J.; Almar, R. Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers. Surv. Geophys. 2020, 41, 1489–1534. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Raucoules, D.; Almeida, L.P.; Bergsma, E.W.J.; Capo, S.; et al. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef]
- Bloesch, J.; Gourio, F. The Effect of Winter Weather on U.S. Economic Activity. Econ. Perspect. 2015, 39. Available online: https://ssrn.com/abstract=2598559 (accessed on 17 March 2025).
- Lazo, J.K.; Hosterman, H.R.; Sprague-Hilderbrand, J.M.; Adkins, J.E. Impact-Based Decision Support Services and the Socioeconomic Impacts of Winter Storms. Bull. Am. Meteorol. Soc. 2020, 101, E626–E639. [Google Scholar] [CrossRef]
- Diaz, J.M. Economic Impacts of Wildfire; Southern Fire Exchange-A JFSP Knowledge Exchange Consortium, Environmental Science, Economics, 2012. Available online: https://api.semanticscholar.org/CorpusID:167877233 (accessed on 17 March 2025).
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of Ecological and Socio-Economic Factors to Assess Global Vulnerability to Wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Champagne, C.; McNairn, H.; Berg, A.A. Monitoring Agricultural Soil Moisture Extremes in Canada Using Passive Microwave Remote Sensing. Remote Sens. Environ. 2011, 115, 2434–2444. [Google Scholar] [CrossRef]
- Ding, Y.; Hayes, M.J.; Widhalm, M. Measuring Economic Impacts of Drought: A Review and Discussion. Disaster Prev. Manag. Int. J. 2011, 20, 434–446. [Google Scholar] [CrossRef]
- Cochrane, H. Economic Loss: Myth and Measurement. Disaster Prev. Manag. Int. J. 2004, 13, 290–296. [Google Scholar] [CrossRef]
- Riebsame, W.E. Drought And Natural Resources Management in the United States: Impacts and Implications of the 1987-89 Drought; Routledge: New York, NY, USA, 2019; ISBN 978-0-429-04533-2. [Google Scholar]
- Howitt, R.; MacEwan, D.; Medellín-Azuara, J.; Lund, J.; Sumner, D. Economic Analysis of the 2015 Drought For California Agriculture; UC Davis Center for Watershed Sciences, ERA Economics, UC Agricultural Issues Center: Davis, CA, USA, 2015. [Google Scholar]
- Medellín-Azuara, J.; MacEwan, D.; Howitt, R.E.; Sumner, D.A.; Lund, J.R. A Report for the California Department of Food and Agriculture; Center for Watershed Sciences University of California-Davis: Davis, CA, USA, 2016. [Google Scholar]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- Lazo, J.K.; Lawson, M.; Larsen, P.H.; Waldman, D.M. U.S. Economic Sensitivity to Weather Variability. Bull. Am. Meteorol. Soc. 2011, 92, 709–720. [Google Scholar] [CrossRef]
- NOAA Billion-Dollar Weather and Climate Disasters. Available online: https://www.ncei.noaa.gov/access/billions/time-series (accessed on 18 December 2024).
- US Department of Commerce, N. Impact-Based Decision Support Services (IDSS). Available online: https://www.weather.gov/about/idss (accessed on 17 December 2024).
- Weather, Climate & Catastrophe Insight: 2020 Annual Report|Aon. Available online: https://www.aon.com/global-weather-catastrophe-natural-disasters-costs-climate-change-2020-annual-report/index.html (accessed on 17 December 2024).
- Straub, C.L.; Koontz, S.R.; Loomis, J.B. Economic Valuation of Landsat Imagery; United States Geological Survey: Reston, VA, USA, 2019.
- Boukabara, S.-A.; Garrett, K.; Chen, W.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.; Liu, Q.; Yan, B.; Weng, F.; et al. MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3249–3272. [Google Scholar] [CrossRef]
PMWI 1 | Satellite | Launch Date | Central Frequency (GHz) | Number of Channels | Swath Width (km) | FOV 2 (km) |
ESMR 3 | Nimbus-5, 6 | 1972 | 19.35H 4 | 1 | 1270–3100 | 25–160 |
SMMR 5 | Nimbus-7, SeaSat-1 | 1978 | 6.6 (V 6, H)–37 (V, H) | 10 | 780 | 17–160 |
SSM/I 7 | DMSP 8 | 1987 | 19.35 (V, H)–85 (V, H) | 7 | 1400 | 11–68 |
TMI 9 | TRMM 10 | 1998 | 10.65 (V, H)–85.5 (V, H) | 9 | 760 | 5–63 |
MSMR 11 | OceanSat-1 | 1999 | 6.6 (V, H)–21.0 (V, H) | 8 | 1360 | 22–105 |
AMSR 12 | ADEOS 13-2 | 2002–2003 | 6.925 (V, H)–89 (V, H) | 16 | 1600 | 3.1–70 |
AMSR-E 14 | Aqua | 2002–2011 | 6.925 (V, H)–89 (V, H) | 12 | 1450 | 40–75 |
WindSat | Coriolis | 2003 | 6.9 (V, H)–36.6 (V, H ± 45, L, R 15) | 22 | 1025 | 8–71 |
SSMIS 16 | DMSP | 2004 | 19.35 (V, H)–183.31 ± 1 (H) | 24 | 1700 | 13.1–70.1 |
MWRI 17-1 | FY 18-3(A, B, C, D) | 2008–2010 | 10.65 (V, H)–150 (V, H) | 12 | 1400 | 7.5–85 |
MIRAS 19 | SMOS 20 | 2009 | 1.413 (V, H) | 2 | 1000 | 35–50 |
MADRAS 21 | Megha-Tropiques | 2011 | 18.7 (V, H)–157 (V, H) | 9 | 1700 | 6–60 |
MWRI 22 | HY 23-2(A, B, E) | 2011, 2018, and ≥2024 | 6.6 (V, H)–37 (V, H) | 9 | 1600 | 15–120 |
AMSR 24 2 | GCOM-W1 25 | 2012 | 6.925 (V, H)–89.0 B (V, H) | 16 | 1450 | 3–62 |
GMI 26 | GPM-CO 27 | 2014 | 10.65 (V, H)–183.31 ± 3 (V) | 13 | 850 | 4.4–32 |
MWRI-2 | FY-3(F, H) | 2023 and ≥2025 | 10.65 (V, H)–118.7503 ± 1.2 (V) | 22 | 1400 | 6–45 |
MWRI-RM 28 | FY-3(G, I) | 2023 and ≥2026 | 10.65 (V, H)–183.31 ± 7.0 (V) | 26 | 800 | 4–35 |
COWVR 29 | ISS COWVR 30 | 2022–2024 | 18.7 (V, H, P 31, M 32, L 33, R)–33.9 (V, H, P, M, L, R) | 18 | 890 | 11–31 |
AMSR3 | GOSAT-GW 34 | ≥2025 | 6.925 (V, H)–183.31 ± 3 (V) | 21 | 1450 | 4–58 |
MWI 35 | WSF 36-M1, M2 | 2024, 2028 | 10.85 (V, H, 3rd, 4th)–89 (V, H) | 18 | 1450 | 10–50 |
MWI | Metop-SG 37-(B1, B2, B3) | ≥2026, ≥2033, ≥2040 | 18.7 (V, H)–183.31 ± 2 (V) | 26 | 1700 | 10–50 |
ICI 38 | Metop-SG-(B1, B2, B3) | ≥2026, ≥2033, ≥2040 | 183.31 ± 7.0 (V)–664 ± 4.2 (V, H) | 13 | 1700 | 16 |
CIMR 39 | CIMR A CIMR B | ≥2029 and ≥2031 | 1.41, 6.9, 10.65, 18.7, 36.5 (V, H, P, M, L, R) | 30 | 1900 | 3–64 |
Societal Benefit Area | Topic | Application | Example |
Extreme Events and Disasters | Flooding | Incorporation in hydrologic routing models for flood estimation. | Application of IMERG data for event-based flood modeling in the Sunshui River Basin, southwestern China, using the hydrologic modeling system (HEC-HMS) model [118]. |
Landslides | Nowcasting of potential landslides activities, rainfall intensity, and duration characteristics for landslide occurrence [119]. | Landslide Hazard Assessment model for Situational Awareness (LHASA) was developed using long-term TMPA and IMERG data. This model provides near-real-time estimates of potential landslide activity worldwide and assesses the overlap between global landslide occurrences and extreme rainfall patterns [120]. | |
Tropical Cyclones (TCs) | Improved characteristics of TC track and intensity. | The GPM-CO GMI data have been incorporated into the NRL Automated Tropical Cyclone Forecasting System (ATCFS) to improve the precision of TC location tracking [121]. Furthermore, GMI data were mentioned in NOAA NHC hurricane forecasts for Irma and Jose [38]. | |
Disaster Response | Situational awareness of extreme precipitation in potentially affected areas. | IMERG offers a valuable tool for analyzing precipitation extremes that lead to flooding and landslides, as well as aiding disaster response and recovery efforts [122]. In addition, TRMM and GPM data are being utilized for the development and near-real-time processing of a global flood monitoring system [119]. | |
Reinsurance and Insurance | Definition of extreme precipitation thresholds to determine pay-outs for microinsurance or improved situational awareness for precipitation climatologies. | GPM data are utilized by the Microinsurance Catastrophe Risk Organization (MiCRO) to forecast natural hazard probability. The data are then used to calibrate their insurance products [123]. | |
Water Resources and Agriculture | Drought | Evaluation of precipitation anomalies leveraging extended temporal record. | GPM and TRMM data are utilized to provide information about drought metrics [124]. |
Water Resources Management | Assessment of freshwater input to basins and reservoirs to better quantify water fluxes. | Water resource managers have taught farmers to utilize IMERG data in the Indus Valley to aid in crop irrigation scheduling through cell phone updates [125]. | |
Agricultural Applications and Food Security | Integration of precipitation data within agricultural models to estimate growing seasons onset, crop productivity, and other variables. | GPM and TRMM data are used for hydroclimate monitoring by organizations to assess and track food and water security; for example, they are used by the Famine Early Warning Systems Network [124]. | |
Weather and Climate Modeling | Numerical Weather Prediction (NWP) | Assimilation of Level 1 Tb within NWP modeling for initializing models runs. | GMI Tbs are assimilated in NWP models for the improvement of weather forecasts and to correct the forecasts of TC tracks [38]. |
Land Surface Modeling | Data assimilation into land-surface models to estimate environmental variables. | TRMM data can be used as input for land surface modeling [6]. | |
Climate Variability and Change | Verification and validation of seasonal and climate modeling. | TRMM and GPM data are valuable for validating precipitation outputs from climate models, but the limitations of satellite measurements should be carefully considered in the analysis [5]. | |
Public Health and Ecology | Disaster Tracking | Tracking precipitation anomalies with environmental conditions for disease vectors or water-borne diseases. | TRMM data have been utilized to produce malaria hotspot maps for the Brazilian Amazon [124,126,127]. |
Ecological Forecasting | Monitor changes in precipitation that are associated with migration patterns. | GPM data are used in understanding the movement ecology of migrating birds [128]. | |
Technology and Policy | Satellite Services and Data Distribution | Supporting data distribution and ground systems services. | TRMM TMPA and GPM IMERG data are used in the LHASA model to create global maps of the distribution of potential landslide activity. These maps improve situational awareness and disaster preparedness, especially in regions with limited ground-based observations [38]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouzegari, N.; Bolboli Zadeh, M.; Jimenez Arellano, C.; Afzali Gorooh, V.; Nguyen, P.; Meng, H.; Ferraro, R.R.; Kalluri, S.; Sorooshian, S.; Hsu, K. Passive Microwave Imagers, Their Applications, and Benefits: A Review. Remote Sens. 2025, 17, 1654. https://doi.org/10.3390/rs17091654
Rouzegari N, Bolboli Zadeh M, Jimenez Arellano C, Afzali Gorooh V, Nguyen P, Meng H, Ferraro RR, Kalluri S, Sorooshian S, Hsu K. Passive Microwave Imagers, Their Applications, and Benefits: A Review. Remote Sensing. 2025; 17(9):1654. https://doi.org/10.3390/rs17091654
Chicago/Turabian StyleRouzegari, Nazak, Mohammad Bolboli Zadeh, Claudia Jimenez Arellano, Vesta Afzali Gorooh, Phu Nguyen, Huan Meng, Ralph R. Ferraro, Satya Kalluri, Soroosh Sorooshian, and Kuolin Hsu. 2025. "Passive Microwave Imagers, Their Applications, and Benefits: A Review" Remote Sensing 17, no. 9: 1654. https://doi.org/10.3390/rs17091654
APA StyleRouzegari, N., Bolboli Zadeh, M., Jimenez Arellano, C., Afzali Gorooh, V., Nguyen, P., Meng, H., Ferraro, R. R., Kalluri, S., Sorooshian, S., & Hsu, K. (2025). Passive Microwave Imagers, Their Applications, and Benefits: A Review. Remote Sensing, 17(9), 1654. https://doi.org/10.3390/rs17091654