Author Contributions
Conceptualization, X.Z., Z.L. and L.L.; methodology, Z.L., X.Z. and L.L.; formal analysis, X.Z., Z.L. and L.L.; writing—original draft preparation, Z.L.; writing—review and editing, X.Z. and L.L.; supervision, W.L., T.Z., W.A. and J.W.; funding acquisition, X.Z. and L.L. All authors have read and agreed to the published version of the manuscript.
Figure 1.
Workflow of post-processing optimization of GLC_FCS30D.
Figure 1.
Workflow of post-processing optimization of GLC_FCS30D.
Figure 2.
Example of using the LandTrendr algorithm to segment the homogeneity of the time series.
Figure 2.
Example of using the LandTrendr algorithm to segment the homogeneity of the time series.
Figure 3.
Optimization of bare areas, sparse vegetation, grassland, and shrubland cover types in arid and semi-arid regions by combining time-series NDVI data and precipitation data.
Figure 3.
Optimization of bare areas, sparse vegetation, grassland, and shrubland cover types in arid and semi-arid regions by combining time-series NDVI data and precipitation data.
Figure 4.
NDVI composite and segmentation example: (a) NDVI of the E140S15 block in 2000; (b) NDVI of the E140S15 block in 2020; (c) segmentation results of NDVI for the E140S15 block over 26 epochs; (d) NDVI of the E35N5 block in 2000; (e) NDVI of the E35N5 block in 2020; (f) segmentation results of NDVI for the E35N5 block over 26 epochs.
Figure 4.
NDVI composite and segmentation example: (a) NDVI of the E140S15 block in 2000; (b) NDVI of the E140S15 block in 2020; (c) segmentation results of NDVI for the E140S15 block over 26 epochs; (d) NDVI of the E35N5 block in 2000; (e) NDVI of the E35N5 block in 2020; (f) segmentation results of NDVI for the E35N5 block over 26 epochs.
Figure 5.
Comparison of forest and cropland area changes in GLC_FCS30D products with and without post-processing optimization: Comparison of (a) forest loss area, (b) cropland loss area, (c) forest gain area, (d) and cropland gain area.
Figure 5.
Comparison of forest and cropland area changes in GLC_FCS30D products with and without post-processing optimization: Comparison of (a) forest loss area, (b) cropland loss area, (c) forest gain area, (d) and cropland gain area.
Figure 6.
Land cover change intensity of wetland–water bodies and wetland–forests at a resolution of 0.05 degrees: GLC_FCS30D product (a) without and (b) with post-processing optimization; (c–f) zoomed-in view of local areas.
Figure 6.
Land cover change intensity of wetland–water bodies and wetland–forests at a resolution of 0.05 degrees: GLC_FCS30D product (a) without and (b) with post-processing optimization; (c–f) zoomed-in view of local areas.
Figure 7.
Land cover change intensity of bare areas–sparse vegetation–grassland–shrubland in arid and semi-arid regions at a resolution of 0.05 degrees: GLC_FCS30D product (a) without and (b) with post-processing optimization; (c–f) zoomed-in view of local areas.
Figure 7.
Land cover change intensity of bare areas–sparse vegetation–grassland–shrubland in arid and semi-arid regions at a resolution of 0.05 degrees: GLC_FCS30D product (a) without and (b) with post-processing optimization; (c–f) zoomed-in view of local areas.
Figure 8.
Distribution map of land cover changes in the GLC_FCS30D product from 1985 to 2022: (a) without and (b) with post-processing optimization.
Figure 8.
Distribution map of land cover changes in the GLC_FCS30D product from 1985 to 2022: (a) without and (b) with post-processing optimization.
Figure 9.
Comparison of details of specific regions of the GLC_FCS30D products with and without post-processing optimization: (a) a region in South America; (b) a region in Asia.
Figure 9.
Comparison of details of specific regions of the GLC_FCS30D products with and without post-processing optimization: (a) a region in South America; (b) a region in Asia.
Figure 10.
Comparison of details of specific regions of the GLC_FCS30D products with and without post-processing optimization: (a) another region in South America; (b) another region in Asia.
Figure 10.
Comparison of details of specific regions of the GLC_FCS30D products with and without post-processing optimization: (a) another region in South America; (b) another region in Asia.
Figure 11.
Cumulative net change area of 10 major land cover types in GLC_FCS30D products with and without post-processing optimization: (a) cropland, (b) forest, (c) shrubland, (d) grassland, (e) tundra, (f) wetland, (g) impervious surfaces, (h) bare areas, (i) water body, and (j) permanent snow and ice.
Figure 11.
Cumulative net change area of 10 major land cover types in GLC_FCS30D products with and without post-processing optimization: (a) cropland, (b) forest, (c) shrubland, (d) grassland, (e) tundra, (f) wetland, (g) impervious surfaces, (h) bare areas, (i) water body, and (j) permanent snow and ice.
Figure 12.
Time series of the O.A. of the GLC_FCS30D product with post-processing optimization using the LCMAP_Val annual reference dataset for the contiguous United States (CONUS) from 1985 to 2021.
Figure 12.
Time series of the O.A. of the GLC_FCS30D product with post-processing optimization using the LCMAP_Val annual reference dataset for the contiguous United States (CONUS) from 1985 to 2021.
Figure 13.
Overall accuracy (O.A.) of the GLC_FCS30D product with post-processing optimization for the European Union (EU) region using the LUCAS validation dataset from 2006 to 2018.
Figure 13.
Overall accuracy (O.A.) of the GLC_FCS30D product with post-processing optimization for the European Union (EU) region using the LUCAS validation dataset from 2006 to 2018.
Figure 14.
Producer’s accuracy (P.A.) and user’s accuracy (U.A.) of the GLC_FCS30D product with post-processing optimization for the European Union (EU) region using the LUCAS validation dataset from 2006 to 2018.
Figure 14.
Producer’s accuracy (P.A.) and user’s accuracy (U.A.) of the GLC_FCS30D product with post-processing optimization for the European Union (EU) region using the LUCAS validation dataset from 2006 to 2018.
Figure 15.
Comparison of GLC_FCS30D product with post-processing optimization and LCMAP product in the contiguous United States.
Figure 15.
Comparison of GLC_FCS30D product with post-processing optimization and LCMAP product in the contiguous United States.
Table 1.
Transition matrix of 10 major land cover types of GLC_FCS30D product without post-processing optimization (units: Mha).
Table 1.
Transition matrix of 10 major land cover types of GLC_FCS30D product without post-processing optimization (units: Mha).
| CRP | FST | SHR | GRS | TUD | WET | IMP | BAL | WTR | PSI | Total |
---|
CRP | 0.00 | 311.58 | 187.25 | 249.80 | 1.02 | 70.03 | 160.22 | 106.49 | 10.72 | 0.12 | 1097.23 |
FST | 414.63 | 0.00 | 427.48 | 176.37 | 4.59 | 634.72 | 33.57 | 84.13 | 15.62 | 1.09 | 1792.19 |
SHR | 213.58 | 353.51 | 0.00 | 231.29 | 3.49 | 77.95 | 20.11 | 131.93 | 4.26 | 0.96 | 1037.08 |
GRS | 261.30 | 153.55 | 232.11 | 0.00 | 2.28 | 45.39 | 25.15 | 204.22 | 4.74 | 9.41 | 938.15 |
TUD | 0.92 | 3.13 | 3.79 | 1.66 | 0.00 | 7.92 | 0.36 | 8.25 | 1.93 | 1.41 | 29.38 |
WET | 63.04 | 608.32 | 75.53 | 41.27 | 7.31 | 0.00 | 4.03 | 119.75 | 321.18 | 0.33 | 1240.76 |
IMP | 117.85 | 27.36 | 15.28 | 19.66 | 0.31 | 3.50 | 0.00 | 18.84 | 1.38 | 0.24 | 204.41 |
BAL | 111.03 | 65.58 | 144.38 | 202.63 | 9.37 | 130.87 | 24.99 | 0.00 | 24.12 | 33.22 | 746.19 |
WTR | 8.36 | 13.09 | 4.36 | 4.91 | 2.03 | 325.39 | 2.15 | 31.55 | 0.00 | 12.23 | 404.06 |
PSI | 0.11 | 0.80 | 0.83 | 8.80 | 0.95 | 0.28 | 0.22 | 24.85 | 10.70 | 0.00 | 47.55 |
Total | 1190.81 | 1536.91 | 1091.02 | 936.41 | 31.35 | 1296.04 | 270.79 | 730.00 | 394.64 | 59.02 | 7537.00 |
Table 2.
Transition matrix of 10 major land cover types of GLC_FCS30D product with post-processing optimization (units: Mha).
Table 2.
Transition matrix of 10 major land cover types of GLC_FCS30D product with post-processing optimization (units: Mha).
| CRP | FST | SHR | GRS | TUD | WET | IMP | BAL | WTR | PSI | Total |
---|
CRP | 0.00 | 129.33 | 70.54 | 62.43 | 0.09 | 28.28 | 63.94 | 39.98 | 5.63 | 0.04 | 400.27 |
FST | 231.79 | 0.00 | 192.50 | 90.49 | 2.48 | 40.67 | 14.84 | 34.22 | 8.12 | 0.38 | 615.48 |
SHR | 95.49 | 120.29 | 0.00 | 36.58 | 0.83 | 27.30 | 6.96 | 11.43 | 1.39 | 0.28 | 300.57 |
GRS | 78.23 | 60.60 | 36.43 | 0.00 | 0.71 | 16.93 | 8.97 | 10.18 | 1.92 | 2.46 | 216.42 |
TUD | 0.07 | 1.21 | 0.99 | 0.41 | 0.00 | 2.48 | 0.09 | 3.77 | 0.62 | 0.55 | 10.18 |
WET | 20.74 | 13.64 | 23.61 | 12.55 | 1.96 | 0.00 | 2.00 | 37.14 | 27.26 | 0.28 | 139.18 |
IMP | 25.40 | 6.67 | 2.81 | 4.01 | 0.04 | 1.76 | 0.00 | 4.66 | 0.57 | 0.07 | 45.98 |
BAL | 48.78 | 16.78 | 12.07 | 11.12 | 4.13 | 50.36 | 9.95 | 0.00 | 8.60 | 11.44 | 173.24 |
WTR | 3.29 | 4.66 | 1.32 | 2.14 | 0.65 | 38.91 | 1.32 | 15.40 | 0.00 | 3.47 | 71.17 |
PSI | 0.02 | 0.11 | 0.18 | 1.60 | 0.16 | 0.25 | 0.05 | 4.16 | 1.99 | 0.00 | 8.52 |
Total | 503.80 | 353.29 | 340.45 | 221.33 | 11.04 | 206.94 | 108.12 | 160.96 | 56.10 | 18.97 | 1981.00 |
Table 3.
Cumulative net change area of the GLC_FCS30D products with and without post-processing optimization from 1985 to 2022 (units: Mha).
Table 3.
Cumulative net change area of the GLC_FCS30D products with and without post-processing optimization from 1985 to 2022 (units: Mha).
Land Cover Type | GLC_FCS30D without Post-Processing Optimization | GLC_FCS30D with Post-Processing Optimization |
---|
Cropland | 93.58 | 103.53 |
Forest | −255.27 | −266.19 |
Shrubland | 53.94 | 39.89 |
Grassland | −1.73 | 1.90 |
Tundra | 1.98 | 0.86 |
Wetland | 55.29 | 67.76 |
Impervious surfaces | 66.38 | 69.14 |
Bare areas | −16.20 | −15.27 |
Water body | −9.43 | −12.07 |
Permanent snow and ice | 11.47 | 10.45 |
Table 4.
Error matrix of the 2020 GLC_FCS30D product with post-processing optimization based on the basic classification system.
Table 4.
Error matrix of the 2020 GLC_FCS30D product with post-processing optimization based on the basic classification system.
| Map | O.A. = 81.15% (±0.26%) | | | | | | | |
---|
Reference | CRP | FST | GRS | SHR | WET | WTR | TUD | IMP | BAL | PSI | Total | P.A. | SE |
---|
CRP | 13,674 | 381 | 426 | 223 | 66 | 16 | 0 | 81 | 54 | 0 | 14,921 | 91.64 | 0.44 |
FST | 498 | 24,439 | 371 | 625 | 210 | 31 | 3 | 59 | 78 | 2 | 26,316 | 92.86 | 0.31 |
GRS | 1084 | 1032 | 4969 | 786 | 214 | 13 | 79 | 47 | 967 | 7 | 9198 | 54.08 | 1.02 |
SHR | 554 | 1580 | 785 | 4295 | 156 | 13 | 15 | 45 | 464 | 2 | 7909 | 54.70 | 1.10 |
WET | 77 | 423 | 132 | 145 | 3616 | 330 | 28 | 18 | 186 | 3 | 4958 | 72.97 | 1.24 |
WTR | 42 | 66 | 17 | 40 | 254 | 2519 | 12 | 12 | 25 | 5 | 2992 | 84.09 | 1.31 |
TUD | 4 | 105 | 124 | 121 | 22 | 29 | 2078 | 2 | 440 | 16 | 2941 | 70.66 | 1.65 |
IMP | 84 | 47 | 13 | 32 | 8 | 10 | 2 | 4252 | 26 | 0 | 4474 | 95.04 | 0.64 |
BAL | 105 | 32 | 711 | 496 | 51 | 29 | 471 | 38 | 7816 | 107 | 9856 | 79.39 | 0.80 |
PSI | 2 | 3 | 19 | 13 | 0 | 35 | 21 | 0 | 40 | 1165 | 1298 | 89.75 | 1.65 |
Total | 16,124 | 28,108 | 7567 | 6776 | 4597 | 3025 | 2709 | 4554 | 10,096 | 1307 | | | |
U.A. | 84.81 | 86.95 | 65.95 | 63.54 | 78.57 | 83.26 | 76.71 | 93.37 | 77.56 | 89.14 | | | |
SE | 0.55 | 0.39 | 1.07 | 1.14 | 1.19 | 1.33 | 1.59 | 0.72 | 0.81 | 1.69 | | | |
Table 5.
Error matrix of the 2020 GLC_FCS30D product with post-processing optimization based on the LCCS level-1 validation system.
Table 5.
Error matrix of the 2020 GLC_FCS30D product with post-processing optimization based on the LCCS level-1 validation system.
| Map | O.A. = 74.24% (±0.29%) | | | | | | | | | | | | |
---|
Reference | RCP | ICP | EBF | DBF | ENF | DNF | MFT | SHR | GRS | LMS | SVG | IWL | CWL | IMP | BAL | WTR | PSI | Total | P.A. | SE |
---|
RCP | 11,665 | 36 | 136 | 182 | 45 | 7 | 11 | 216 | 402 | 0 | 36 | 34 | 3 | 28 | 13 | 1 | 0 | 12,815 | 91.03 | 0.49 |
ICP | 331 | 1642 | 0 | 0 | 0 | 0 | 0 | 7 | 24 | 0 | 5 | 23 | 6 | 53 | 0 | 15 | 0 | 2106 | 77.97 | 1.77 |
EBF | 193 | 32 | 7725 | 946 | 232 | 93 | 38 | 259 | 105 | 0 | 5 | 0 | 0 | 31 | 2 | 16 | 0 | 9677 | 79.81 | 0.80 |
DBF | 205 | 14 | 612 | 5510 | 521 | 322 | 30 | 207 | 174 | 3 | 10 | 82 | 1 | 22 | 1 | 0 | 2 | 7716 | 71.41 | 1.01 |
ENF | 40 | 2 | 187 | 243 | 4786 | 204 | 10 | 93 | 44 | 0 | 30 | 96 | 1 | 6 | 10 | 11 | 0 | 5763 | 83.03 | 0.97 |
DNF | 9 | 0 | 2 | 112 | 104 | 1674 | 5 | 58 | 45 | 0 | 14 | 21 | 0 | 0 | 6 | 3 | 0 | 2053 | 81.53 | 1.68 |
MFT | 3 | 0 | 30 | 138 | 127 | 124 | 664 | 8 | 3 | 0 | 0 | 9 | 0 | 0 | 0 | 1 | 0 | 1107 | 59.95 | 2.89 |
SHR | 521 | 33 | 294 | 755 | 315 | 125 | 91 | 4295 | 785 | 15 | 405 | 151 | 5 | 45 | 59 | 13 | 2 | 7909 | 54.70 | 1.10 |
GRS | 1008 | 76 | 153 | 535 | 179 | 144 | 21 | 786 | 4969 | 79 | 783 | 209 | 5 | 47 | 184 | 13 | 7 | 9198 | 54.08 | 1.02 |
LMS | 2 | 2 | 1 | 20 | 38 | 43 | 3 | 121 | 124 | 2078 | 354 | 20 | 2 | 2 | 86 | 29 | 16 | 2941 | 70.66 | 1.65 |
SVG | 52 | 8 | 6 | 6 | 8 | 4 | 1 | 316 | 396 | 29 | 2226 | 11 | 0 | 8 | 586 | 4 | 21 | 3682 | 60.46 | 1.58 |
IWL | 56 | 15 | 104 | 76 | 176 | 53 | 2 | 136 | 127 | 28 | 143 | 2232 | 198 | 12 | 28 | 276 | 3 | 3665 | 60.93 | 1.58 |
CWL | 4 | 2 | 7 | 1 | 2 | 2 | 0 | 9 | 5 | 0 | 10 | 126 | 1060 | 6 | 5 | 54 | 0 | 1293 | 81.85 | 2.10 |
IMP | 72 | 12 | 16 | 14 | 13 | 2 | 2 | 32 | 13 | 2 | 12 | 7 | 1 | 4252 | 14 | 10 | 0 | 4474 | 95.04 | 0.64 |
BAL | 36 | 9 | 2 | 3 | 2 | 0 | 0 | 180 | 315 | 442 | 492 | 38 | 2 | 30 | 4512 | 25 | 86 | 6174 | 73.08 | 1.11 |
WTR | 22 | 20 | 19 | 10 | 30 | 6 | 1 | 40 | 17 | 12 | 8 | 150 | 104 | 12 | 17 | 2519 | 5 | 2992 | 84.09 | 1.31 |
PSI | 1 | 1 | 0 | 1 | 2 | 0 | 0 | 13 | 19 | 21 | 21 | 0 | 0 | 0 | 19 | 35 | 1165 | 1298 | 89.75 | 1.65 |
Total | 14,220 | 1904 | 9294 | 8552 | 6580 | 2803 | 879 | 6776 | 7567 | 2709 | 4554 | 3209 | 1388 | 4554 | 5542 | 3025 | 1307 | | | |
U.A. | 82.03 | 86.24 | 83.12 | 64.43 | 72.76 | 59.71 | 75.51 | 63.55 | 65.86 | 76.71 | 49.05 | 69.45 | 76.20 | 93.37 | 81.41 | 83.26 | 89.14 | | | |
SE | 0.63 | 1.55 | 0.76 | 1.01 | 1.08 | 1.82 | 2.84 | 1.14 | 1.07 | 1.59 | 1.45 | 1.59 | 2.24 | 0.72 | 1.02 | 1.33 | 1.69 | | | |
Table 6.
The error matrix of changed and unchanged pixels in GLC_FCS30D with post-processing optimization, as evaluated using the LCMAP_Val and LUCAS validation datasets.
Table 6.
The error matrix of changed and unchanged pixels in GLC_FCS30D with post-processing optimization, as evaluated using the LCMAP_Val and LUCAS validation datasets.
LCMAP_Val | | Unchanged | Changed | Total | P.A. (SE) |
Unchanged | 22,406 | 1504 | 23,910 | 93.71 (0.30) |
Changed | 784 | 2306 | 3090 | 74.63 (1.53) |
Total | 23,190 | 3810 | 27,000 | |
U.A. (SE) | 96.62 (0.23) | 60.52 (1.55) | | |
O.A. (SE) | 91.53 (0.33) |
LUCAS | | Unchanged | Changed | Total | P.A. (SE) |
Unchanged | 906,507 | 25,963 | 932,470 | 97.22 (0.03) |
Changed | 68,940 | 89,453 | 158,393 | 56.48 (0.24) |
Total | 975,447 | 115,416 | 1,090,863 | |
U.A. (SE) | 92.93 (0.05) | 77.50 (0.24) | | |
O.A. (SE) | 91.16 (0.05) |
Table 7.
Cumulative land cover transition matrix for the contiguous United States (CONUS) region for the GLC_FCS30D product with and without post-processing optimization and the LCMAP annual land cover product (units: Mha).
Table 7.
Cumulative land cover transition matrix for the contiguous United States (CONUS) region for the GLC_FCS30D product with and without post-processing optimization and the LCMAP annual land cover product (units: Mha).
| | IMP | CRP | GRS/SHR | FST | WTR | WET | PSI | BAL | Total |
---|
GLC_FCS30D without post-processing optimization | IMP | 0.00 | 6.08 | 6.38 | 7.37 | 0.11 | 0.26 | 0.00 | 0.69 | 20.89 |
CRP | 10.05 | 0.00 | 67.11 | 23.29 | 0.68 | 6.36 | 0.00 | 2.06 | 109.55 |
GRS/SHR | 8.21 | 63.74 | 0.00 | 37.80 | 0.32 | 3.14 | 0.01 | 8.18 | 121.41 |
FST | 8.24 | 28.35 | 41.34 | 0.00 | 0.99 | 61.56 | 0.01 | 7.75 | 148.24 |
WTR | 0.13 | 0.37 | 0.27 | 0.91 | 0.00 | 7.45 | 0.02 | 1.22 | 10.37 |
WET | 0.30 | 5.98 | 3.10 | 60.64 | 7.55 | 0.00 | 0.00 | 6.84 | 84.41 |
PSI | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | 0.03 | 0.06 |
BAL | 0.84 | 1.64 | 7.50 | 6.38 | 1.20 | 6.75 | 0.05 | 0.00 | 24.36 |
Total | 27.78 | 106.16 | 125.69 | 136.39 | 10.87 | 85.52 | 0.09 | 26.79 | 519.29 |
GLC_FCS30D with post-processing optimization | IMP | 0.00 | 1.03 | 1.34 | 1.90 | 0.05 | 0.14 | 0.00 | 0.15 | 4.62 |
CRP | 3.89 | 0.00 | 26.04 | 8.25 | 0.44 | 2.12 | 0.00 | 0.55 | 41.29 |
GRS/SHR | 3.09 | 25.19 | 0.00 | 12.80 | 0.18 | 1.21 | 0.00 | 3.62 | 46.09 |
FST | 3.13 | 11.54 | 16.10 | 0.00 | 0.39 | 16.88 | 0.00 | 1.69 | 49.73 |
WTR | 0.08 | 0.14 | 0.11 | 0.24 | 0.00 | 3.83 | 0.01 | 0.29 | 4.70 |
WET | 0.16 | 1.43 | 0.97 | 14.72 | 3.46 | 0.00 | 0.00 | 0.70 | 21.44 |
PSI | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 |
BAL | 0.28 | 0.37 | 3.27 | 0.77 | 0.29 | 0.73 | 0.02 | 0.00 | 5.73 |
Total | 10.63 | 39.70 | 47.83 | 38.68 | 4.81 | 24.92 | 0.04 | 6.99 | 173.60 |
LCMAP product (CONUS region) | IMP | 0.00 | 3.01 | 4.62 | 0.83 | 0.22 | 0.05 | 0.00 | 0.43 | 9.15 |
CRP | 4.32 | 0.00 | 25.46 | 2.86 | 1.01 | 0.59 | 0.00 | 0.67 | 34.91 |
GRS/SHR | 4.64 | 23.32 | 0.00 | 47.97 | 1.44 | 0.63 | 0.00 | 2.93 | 80.94 |
FST | 1.86 | 4.39 | 50.34 | 0.00 | 0.33 | 0.17 | 0.00 | 1.25 | 58.33 |
WTR | 0.20 | 0.71 | 1.30 | 0.24 | 0.00 | 0.66 | 0.00 | 0.85 | 3.97 |
WET | 0.13 | 0.54 | 0.73 | 0.16 | 0.64 | 0.00 | 0.00 | 0.10 | 2.31 |
PSI | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
BAL | 0.57 | 0.60 | 3.39 | 0.20 | 0.56 | 0.10 | 0.00 | 0.00 | 5.42 |
Total | 11.73 | 32.58 | 85.85 | 52.25 | 4.21 | 2.19 | 0.00 | 6.23 | 195.03 |