Toward an Operational System for Automatically Detecting Xylella fastidiosa in Olive Groves Based on Hyperspectral and Thermal Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Data Collection
2.2. Remotely Sensed Data Collection and Processing
2.3. Feature Extraction
2.4. Online Available Data
2.5. Automatic Classification Algorithms
2.6. Evaluation Metrics
3. Results
3.1. Analysis of Training Set Dimension
3.2. Spatial Analysis
3.3. Joint Data Set Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EFSA Panel on Plant Health (PLH); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.-A.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; et al. Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA J. 2019, 17, 5665. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Cavalieri, V.; Fasanelli, E.; Gibin, D.; Gutierrez Linares, A.; La Notte, P.; Pasinato, L.; Delbianco, A. Update of the Xylella spp. host plant database—Systematic literature search up to 31 December 2023. EFSA J. 2024, 22, e8898. [Google Scholar] [CrossRef] [PubMed]
- Sicard, A.; Zeilinger, A.R.; Vanhove, M.; Schartel, T.E.; Beal, D.J.; Daugherty, M.P.; Almeida, R.P.P. Xylella fastidiosa: Insights into an Emerging Plant Pathogen. Annu. Rev. Phytopathol. 2018, 25, 181–202. [Google Scholar] [CrossRef]
- Sicard, A.; Saponari, M.; Vanhove, M.; Castillo, A.I.; Giampetruzzi, A.; Loconsole, G.; Saldarelli, P.; Boscia, D.; Neema, C.; Almeida, R.P.P. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb. Genom. 2021, 7, 000735. [Google Scholar] [CrossRef] [PubMed]
- Saponari, M.; Boscia, D.; Altamura, G.; Loconsole, G.; Zicca, S.; D’Attoma, G.; Morelli, M.; Palmisano, F.; Saponari, A.; Tavano, D.; et al. Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Sci. Rep. 2017, 7, 17723. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA Sequences Related to Xylella fastidiosa in Oleander, Almond And Olive Trees Exhibiting Leaf Scorch Symptoms In Apulia (Southern Italy). J. Plant Pathol. 2013, 95, 668. [Google Scholar]
- Kottelenberg, D.; Hemerik, L.; Saponari, M.; van der Werf, W. Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia. Sci. Rep. 2021, 11, 1061. [Google Scholar] [CrossRef]
- EPPO. First Report of Xylella fastidiosa in Israel. EPPO Reporting Service No. 6, Global Database. 2019. Available online: https://gd.eppo.int/reporting/article-6551 (accessed on 14 January 2025).
- Amanifar, N.; Taghavi, M.; Izadpanah, K.; Babeik, G. Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopathol. Mediterr. 2014, 53, 318–327. [Google Scholar] [CrossRef]
- European Union. Commission Implementing Decision (EU) 2015/789 of 18 May 2015 as Regards Measures to Prevent the IntrodDuction into and the Spread Within the Union of Xylella fastidiosa (Wells et al.). Available online: https://eur-lex.europa.eu/eli/dec_impl/2015/789/oj (accessed on 14 January 2025).
- European Union. Commission Implementing Regulation (EU) 2020/1201 of 14 August 2020 as Regards Measures to Prevent the Introduction into and the Spread Within the Union of Xylella fastidiosa (Wells et al.). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020R1201 (accessed on 14 January 2025).
- European Union. Commission Implementing Regulation (EU) 2024/1320 of 15 May 2024 Amending Implementing Regulation (EU) 2020/1201 as Regards the List of Infected Zones for Containment of Xylella fastidiosa (Wells et al.). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202401320 (accessed on 14 January 2025).
- Apulia Region Report n. 18/2024, 2024. Last Update of Delimitated Zones for Xylella fastidiosa subspecies Pauca. Available online: https://burp.regione.puglia.it/documents/20135/2470544/DET_48_3_5_2024.pdf (accessed on 14 January 2025).
- EFSA (European Food Safety Authority); Lázaro, E.; Parnell, S.; Vicent Civera, A.; Schans, J.; Schenk, M.; Schrader, G.; CortiñasAbrahantes, J.; Zancanaro, G.; Vos, S. Guidelines for Statistically Sound and Risk-Based Surveys of Xylella fastidiosa; EN-1873; EFSA Supporting Publication: Parma, Italy, 2020; 76p. [Google Scholar] [CrossRef]
- Action Plan to Prevent the Spread of Xylella fastidiosa (Well et al.) in Puglia—Three-Year Period 2024–2026. Available online: https://burp.regione.puglia.it/documents/20135/2560952/DEL_1593_2024.pdf/4501bf7f-c5ec-face-57d4-a559581af1c2?t=1733751415831 (accessed on 14 January 2025).
- Available online: http://www.emergenzaxylella.it/portal/portale_gestione_agricoltura/ (accessed on 14 January 2025).
- Zarco-Tejada, P.J.; Camino, C.; Beck, P.S.A.A.; Calderon, R.; Hornero, A.; Hernandez-Clemente, R.; Kattenborn, T.; Montes-Borrego, M.; Susca, L.; Morelli, M.; et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant trait alterations. Nat. Plants 2018, 4, 432–439. [Google Scholar] [CrossRef]
- Poblete, T.; Camino, C.; Beck, P.S.A.; Hornero, A.; Kattenborn, T.; Saponari, M.; Boscia, D.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis. ISPRS J. Photogramm. Remote Sens. 2020, 162, 27–40. [Google Scholar] [CrossRef]
- Hornero, A.; Hernández-Clemente, R.; North, P.R.J.; Beck, P.S.A.; Boscia, D.; Navas- Cortes, J.A.; Zarco-Tejada, P.J. Monitoring Xylella fastidiosa infection symptoms in olive orchards using Sentinel 2 imagery and 3-D radiative transfer modelling. Remote Sens. Environ. 2020, 236, 111480. [Google Scholar] [CrossRef]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and Real-Time PCR Methods for the Rapid Detection of Xylella fastidiosa for Quarantine and Field Applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Bovolo, F.; Bruzzone, L. The Time Variable in Data Fusion: A Change Detection Perspective. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–26. [Google Scholar] [CrossRef]
- Fernandez-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. Available online: https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf (accessed on 14 January 2025).
- EPPO. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 2019, 49, 175–227. [Google Scholar] [CrossRef]
- Giampetruzzi, A.; Morelli, M.; Saponari, M.; Loconsole, G.; Chiumenti, M.; Boscia, D.; Savino, V.N.; Martelli, G.P.; Saldarelli, P. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genom. 2016, 17, 475. [Google Scholar] [CrossRef]
- Available online: http://www.gstdubai.com/downloads/CASI-1500.pdf (accessed on 14 January 2025).
- Ortiz, J.D.; Avouris, D.; Schiller, S.; Luvall, J.C.; Lekki, J.D.; Tokars, R.P.; Anderson, R.C.; Shuchman, R.; Sayers, M.; Becker, R. Intercomparison of approaches to the empirical line method for vicarious hyperspectral reflectance calibration. Front. Mar. Sci. 2017, 4, 296. [Google Scholar] [CrossRef]
- Available online: https://www.itres.com/wp-content/uploads/2024/06/microTABI-640-Specification-Sheet-06.2024.pdf (accessed on 14 January 2025).
- Merchant, C.J. Thermal Infrared Remote Sensing; Kuenzer, C., Dech, S., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2013; Volume 17, ISBN 978-94-007-6638-9. [Google Scholar]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Scholkopf, B.; Sung, K.; Burges, C.J.C.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. IEEE Trans. Signal Process. 1997, 45, 2758–2765. [Google Scholar] [CrossRef]
- Ancona, N.; Maglietta, R.; Piepoli, A.; D’Addabbo, A.; Cotugno, R.; Pesole, G.; Liuni, S.; Savino, M.; Carella, M.; Perri, F. On the statistical assessment of classifiers using DNA microarray data. BMC Bioinform. 2006, 7, 387. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Syst. Man Cybern.—PART A Syst. Hum. 2010, 40, 185–197. [Google Scholar] [CrossRef]
- D’Addabbo, A.; Belmonte, A.; Bovenga, F.; Lovergine, F.; Refice, A.; Matarrese, R.; Gallo, A.; Mita, G.; Abou Kubaa, R.; Boscia, D.; et al. Automatic Detection of Xylella Fastidiosa in Aerial Hyperspectral and Thermal Data. In Proceedings of the 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2023), Pasadena, CA, USA, 16–21 July 2023. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 0-387-95284-5. [Google Scholar]
- Chung, J.; Zhang, J.; Saimon, A.I.; Liu, Y.; Johnson, B.N.; Kong, Z. Imbalanced spectral data analysis using data augmentation based on the generative adversarial network. Sci. Rep. 2024, 14, 13230. [Google Scholar] [CrossRef] [PubMed]
CH | λ (nm) | BW (nm) | CH | λ (nm) | BW (nm) | CH | λ (nm) | BW (nm) |
---|---|---|---|---|---|---|---|---|
1 | 386.05 | 7.15 | 17 | 519.22 | 2.67 | 33 | 705.37 | 2.67 |
2 | 400.34 | 4.76 | 18 | 525.16 | 2.67 | 34 | 711.29 | 2.67 |
3 | 405.10 | 2.38 | 19 | 531.09 | 2.67 | 35 | 716.03 | 2.37 |
4 | 409.86 | 2.38 | 20 | 535.84 | 2.98 | 36 | 720.77 | 2.37 |
5 | 414.62 | 2.38 | 21 | 542.96 | 3.56 | 37 | 725.51 | 2.37 |
6 | 419.38 | 2.38 | 22 | 550.08 | 4.15 | 38 | 730.24 | 2.37 |
7 | 424.14 | 2.68 | 23 | 559.57 | 4.74 | 39 | 734.98 | 2.37 |
8 | 430.09 | 2.68 | 24 | 569.06 | 15.12 | 40 | 739.72 | 2.37 |
9 | 436.04 | 2.68 | 25 | 620.05 | 25.19 | 41 | 744.46 | 2.37 |
10 | 440.80 | 2.38 | 26 | 671.01 | 13.92 | 42 | 749.20 | 2.66 |
11 | 445.55 | 2.38 | 27 | 675.75 | 2.37 | 43 | 755.12 | 2.66 |
12 | 450.31 | 2.38 | 28 | 680.49 | 2.37 | 44 | 761.05 | 6.52 |
13 | 455.07 | 8.02 | 29 | 685.23 | 2.37 | 45 | 781.18 | 9.77 |
14 | 482.40 | 13.37 | 30 | 689.97 | 2.37 | 46 | 801.37 | 37.34 |
15 | 509.72 | 8.02 | 31 | 694.70 | 2.37 | 47 | 930.55 | 64.02 |
16 | 514.47 | 2.37 | 32 | 699.44 | 2.67 |
VI | Equation | VI | Equation |
---|---|---|---|
NDVI | CRI550 | ||
RDVI | CRI550_515 | ||
OSAVI | CRI700 | ||
MSAVI | CRI700_515 | ||
TVI | PSSRa | ||
MTVI1 | PRI570 | ||
MTVI2 | PRI515 | ||
MCARI | PRIm1 | ||
SR | PRIm3 | ||
MSR | PRIm4 | ||
EVI | PRIn | ||
VOG1 | PRI∙CI | ||
VOG2 | R | ||
VOG3 | G | ||
GM1 | BGI1 | ||
GM2 | BGI2 | ||
TCARI | BRI1 | ||
TCARI/ OSAVI | BRI2 | ||
CI | BF1 | ||
SRPI | BF2 | ||
NPQI | BF3 | ||
NPCI | BF4 | ||
SIPI | BF5 | ||
CTRI1 | RGI | ||
CAR | RARS | ||
DCabCxc | LIC1 | ||
CUR | LIC2 | ||
HI | LIC3 |
“Gorgognolo” Data Set | ||||
---|---|---|---|---|
Training Set Size | OA (%) | FP (%) | Re(%) | Number of Classifiers |
80% | 83.0 | 69.2 | 10 | 1 |
85% | 86.1 | 81.5 76.2 | 10 | 2 |
90% | 91.7 | 85.7 | 10 | 1 |
95% | 100.0 | 100.0 | 10 | 4 |
Data Set 1 | Data Set 2 | ||||||
---|---|---|---|---|---|---|---|
Negative | Positive | TOT. | Negative | Positive | TOT. | ||
Training set | Gorgognolo | 56 | 53 | 199 | 66 | 49 | 199 |
Polignano | 77 | 13 | 67 | 17 | |||
Test set | Gorgognolo | 18 | 9 | 36 | 12 | 9 | 36 |
Polignano | 6 | 3 | 12 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Addabbo, A.; Matarrese, R.; Lovergine, F.; Refice, A.; Belmonte, A.; Bovenga, F.; Gallo, A.; Amoia, S.S.; Abou Kubaa, R.; Mita, G.; et al. Toward an Operational System for Automatically Detecting Xylella fastidiosa in Olive Groves Based on Hyperspectral and Thermal Remote Sensing Data. Remote Sens. 2025, 17, 1372. https://doi.org/10.3390/rs17081372
D’Addabbo A, Matarrese R, Lovergine F, Refice A, Belmonte A, Bovenga F, Gallo A, Amoia SS, Abou Kubaa R, Mita G, et al. Toward an Operational System for Automatically Detecting Xylella fastidiosa in Olive Groves Based on Hyperspectral and Thermal Remote Sensing Data. Remote Sensing. 2025; 17(8):1372. https://doi.org/10.3390/rs17081372
Chicago/Turabian StyleD’Addabbo, Annarita, Raffaella Matarrese, Francesco Lovergine, Alberto Refice, Antonella Belmonte, Fabio Bovenga, Antonia Gallo, Serafina Serena Amoia, Raied Abou Kubaa, Giovanni Mita, and et al. 2025. "Toward an Operational System for Automatically Detecting Xylella fastidiosa in Olive Groves Based on Hyperspectral and Thermal Remote Sensing Data" Remote Sensing 17, no. 8: 1372. https://doi.org/10.3390/rs17081372
APA StyleD’Addabbo, A., Matarrese, R., Lovergine, F., Refice, A., Belmonte, A., Bovenga, F., Gallo, A., Amoia, S. S., Abou Kubaa, R., Mita, G., & Boscia, D. (2025). Toward an Operational System for Automatically Detecting Xylella fastidiosa in Olive Groves Based on Hyperspectral and Thermal Remote Sensing Data. Remote Sensing, 17(8), 1372. https://doi.org/10.3390/rs17081372