Ultra-Short Baseline Synthetic Aperture Passive Positioning Based on Interferometer Assistance
Abstract
:1. Introduction
- A new SAPP method based on interferometer-assisted ultra-short baseline has been proposed, and the positioning results obtained by this method are insensitive to RFO faced in traditional SAPP. RFO in signal processing is eliminated by the signal correlation between two baselines.
- The proposed method transforms the parameter estimation problem of traditional passive positioning based on two-dimensional matched filtering of azimuth distance into a one-dimensional single frequency signal frequency estimation problem, successfully solving the problem that the slow time dimension concept in traditional SAPP does not exist in the case of non-periodic and discontinuous signals sent by NRS, making the proposed method more widely applicable.
- This paper analyzes the influence of signal-to-noise ratio and positioning distance on the positioning results, and provides the Cramer–Rao lower bound (CRLB) for positioning. The effectiveness of the proposed method has been evaluated through simulation calculations and unmanned aerial vehicle (UAV) experiments.
2. Synthetic Aperture Passive Positioning Method
2.1. Geometric Structure of SAPP
2.2. Signal Model
3. Frequency Estimation Corresponding to Positioning
3.1. The Impact of NRS Location on Frequency Estimation
3.2. SS Algorithm Implementation
3.3. Positioning Method Processing Flow
4. Performance Analysis
4.1. CRLB Derivation
4.2. Distance Relative Error Analysis
4.3. RE Analysis Under RFO Conditions
5. Results
5.1. Simulation Results
5.2. Actual Measurement Data Results
6. Discussion
6.1. Simulation-Based Comparative Analysis
6.2. Experimental Performance Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ho, K.; Xu, W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans. Signal Process. 2004, 52, 2453–2463. [Google Scholar] [CrossRef]
- Soldo, Y.; Le Vine, D.M.; Bringer, A.; de Matthaeis, P.; Oliva, R.; Johnson, J.T.; Piepmeier, J.R. Location of Radio-Frequency Interference Sources Using the SMAP L-Band Radiometer. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6854–6866. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, W.; Luo, J.; Kong, H. Direct positioning maximum likelihood estimator using TDOA and FDOA for coherent short-pulse radar. IET Radar Sonar Navig. 2017, 11, 1505–1511. [Google Scholar] [CrossRef]
- Bar-Shalom, O.; Weiss, A.J. Emitter geolocation using single moving receiver. Signal Process. 2014, 105, 70–83. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Guo, F. A Novel Single Satellite Passive Location Method Based on One-Dimensional Cosine Angle and Doppler Rate of Changing. In Proceedings of the 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, 14–16 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, H.; Yang, J.; Liu, Z. Localizing Ground-Based Pulse Emitters via Synthetic Aperture Radar: Model and Method. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.C.; Zhang, X.; Yang, J.; Wang, A.; Xing, M.; Yang, X. An Ultrahigh-Resolution Positioning Algorithm for Satellite Ultra-Long-Duration Data Based on Synthetic Aperture Technique. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Yong, T.; Wang, C. Echo DOA Based High-resolution Target Location. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Feng, M.; He, M.; Xu, J.; Li, S. High Accuracy DOA Estimation Under Low SNR Conditionfor Wideband Underdetermined Signals. J. Electron. Inf. Technol. 2017, 39, 1340. [Google Scholar] [CrossRef]
- Cao, H.; Chan, Y.T.; So, H.C. Maximum Likelihood TDOA Estimation From Compressed Sensing Samples Without Reconstruction. IEEE Signal Process. Lett. 2017, 24, 564–568. [Google Scholar] [CrossRef]
- Ho, K.C. Bias Reduction for an Explicit Solution of Source Localization Using TDOA. IEEE Trans. Signal Process. 2012, 60, 2101–2114. [Google Scholar] [CrossRef]
- Qu, X.; Xie, L.; Tan, W. Iterative Constrained Weighted Least Squares Source Localization Using TDOA and FDOA Measurements. IEEE Trans. Signal Process. 2017, 65, 3990–4003. [Google Scholar] [CrossRef]
- Noroozi, A.; Oveis, A.H.; Hosseini, S.M.; Sebt, M.A. Improved Algebraic Solution for Source Localization From TDOA and FDOA Measurements. IEEE Wirel. Commun. Lett. 2018, 7, 352–355. [Google Scholar] [CrossRef]
- Tzafri, L.; Weiss, A.J. Application of capon method to direct position determination. ICT Express 2016, 2, 5–9. [Google Scholar] [CrossRef]
- Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct Localization for Massive MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [Google Scholar] [CrossRef]
- Xu, E.; Ding, Z.; Dasgupta, S. Source Localization in Wireless Sensor Networks From Signal Time-of-Arrival Measurements. IEEE Trans. Signal Process. 2011, 59, 2887–2897. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Gao, Z.; Jiang, F.; Xing, M.; Bao, Z. A Dual Satellite Interferometric Precise Localization Method Based on Short Synthetic Aperture. J. Electron. Inf. Technol. 2020, 42, 472. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, S. Passive location based on an accurate Doppler measurement by single satellite. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 1424–1427. [Google Scholar] [CrossRef]
- Deng, L.; Wei, P.; Zhang, Z.; Zhang, H. Doppler Frequency Shift Based Source Localization in Presence of Sensor Location Errors. IEEE Access 2018, 6, 59752–59760. [Google Scholar] [CrossRef]
- Xia, D.; Zhang, M.; Guo, F.; Feng, D. Doppler Rate-of-Change Estimation Method for BPSK Signal Based on Spectrum Phase. In Proceedings of the 2019 International Conference on Electronic Engineering and Informatics (EEI), Nanjing, China, 8–10 November 2019; pp. 68–72. [Google Scholar] [CrossRef]
- Yang, R.; Foo, P.H.; Ng, B.P.; Ng, G.W. RF Emitter Geolocation using Amplitude Comparison with Auto-Calibrated Relative Antenna Gains. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2098–2110. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Zou, X.; Jin, G.; He, F.; Zhang, Y. A New Waveform Design Method for Multi-Target Inverse Synthetic Aperture Radar Imaging Based on Orthogonal Frequency Division Multiplexing Chirp. Remote Sens. 2024, 16, 308. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Z.; Yang, J. Design of Passive Modes and Parameter Estimation Methods for Localizing Terrestrial Emitters via SAR Systems. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5220513. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.C.; Wang, Y.; Zhang, Z.; Xing, M.; Yang, X. A High-Resolution and High-Precision Passive Positioning System Based on Synthetic Aperture Technique. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5230613. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.C.; Yang, J.; Xing, M.; Yang, X.; Bao, Z. Passive localization algorithm for radiation source based on long synthetic aperture. J. Radars 2020, 9, 185–194. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.; Xing, M.; Zhang, Z. Performance Analysis and Parameter Design of Synthetic Aperture Passive Positioning. J. Electron. Inf. Technol. 2022, 44, 9. [Google Scholar] [CrossRef]
- Zhang, L.; Huan, H.; Tao, R.; Wang, Y. Emitter Localization Algorithm Based on Passive Synthetic Aperture. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2687–2701. [Google Scholar] [CrossRef]
- Sun, J.; Huan, H.; Tao, R.; Wang, Y.; Tang, X. Emitter Localization System Based on a Synthetic Aperture Map Drift Technique Aided by an Interferometer. IEEE Geosci. Remote Sens. Lett. 2024, 21, 3500505. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
NRS Signal Frequency () | 18 GHz, 35 GHz |
UAV Speed (v) | 20 m/s |
Short Baseline Spacing (d) | 1 m |
Positioning Target Range | 5−50 km |
Positioning Target Azimuth | 10 m |
Parameter | Value |
---|---|
SNR | –5 dB |
Accumulated Duration (T) | 1 s, 4 s, 10 s |
Accumulated Interval () | 1 ms |
Parameter | Value |
---|---|
Carrier Frequency | 35 GHz |
Pulse Width | 10 μs |
Signal Bandwidth | 10 MHz |
Range | 10 km |
Azimuth | 40 m |
Speed | 0 m/s |
Parameter | Value |
---|---|
Speed | 20 m/s |
Short Baseline Spacing | 1 m |
Accumulated Duration | 4 s |
Accumulated Interval | 1 ms |
Parameter | Value |
---|---|
Carrier Frequency of NRS | 12,000 MHz |
Short Baseline Spacing | 0.518 m |
UAV Speed | 2.09 m/s |
Accumulated Duration | 150 s |
Accumulated Interval | 0.1 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Zhang, Q.; Xu, J.; Zhu, J.; Huang, Z.; Mu, B.; Guo, H. Ultra-Short Baseline Synthetic Aperture Passive Positioning Based on Interferometer Assistance. Remote Sens. 2025, 17, 1358. https://doi.org/10.3390/rs17081358
Liu G, Zhang Q, Xu J, Zhu J, Huang Z, Mu B, Guo H. Ultra-Short Baseline Synthetic Aperture Passive Positioning Based on Interferometer Assistance. Remote Sensing. 2025; 17(8):1358. https://doi.org/10.3390/rs17081358
Chicago/Turabian StyleLiu, Gaogao, Qidong Zhang, Jian Xu, Jiangbo Zhu, Ziyu Huang, Beibei Mu, and Hongfu Guo. 2025. "Ultra-Short Baseline Synthetic Aperture Passive Positioning Based on Interferometer Assistance" Remote Sensing 17, no. 8: 1358. https://doi.org/10.3390/rs17081358
APA StyleLiu, G., Zhang, Q., Xu, J., Zhu, J., Huang, Z., Mu, B., & Guo, H. (2025). Ultra-Short Baseline Synthetic Aperture Passive Positioning Based on Interferometer Assistance. Remote Sensing, 17(8), 1358. https://doi.org/10.3390/rs17081358