Impact of Climate Change on Oriental Migratory Locust Suitability: A Multi-Source Data and MaxEnt-Based Analysis in Hainan Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamental Characteristics of Locusts in Hainan Island
2.2. Data Sources and Environmental Variables
- (1)
- Vegetation data included the vegetation type, Normalized Difference Vegetation Index (NDVI) and Vegetation Exposure (VE). Vegetation type was obtained from the 1:1,000,000 China Vegetation Map, provided by the Scientific Data Center of the Institute of Botany, Chinese Academy of Sciences. Vegetation conditions were derived from the MOD13A2 Version 6 dataset (available at https://lpdaac.usgs.gov/products/mod11a2v006/, accessed on 12 September 2024), which quantifies NDVI values. VE was quantified using the Ratio Vegetation Index (RVI; Table 1), defined as the ratio of the near-infrared (NIR) band to the red band in satellite remote sensing data. Monthly remote sensing data were acquired from the Google Earth Engine platform (https://earthengine.google.com/, accessed on 10 September 2024).
- (2)
- Soil type data were derived from the 1:1,000,000 China Soil Map, provided by the Nanjing Institute of Soil Science, Chinese Academy of Sciences.
- (3)
- Elevation data were acquired from the ASTER GDEM V3 dataset through the Google Earth Engine platform.
- (4)
- Historical climate (2000–2020) and future climate (2021–2040) data were obtained from the WorldClim data website (https://worldclim.org/, accessed on 10 September 2024). The variables were average monthly minimum temperature (°C), maximum temperature (°C), and total precipitation (mm) [31,32].
Category | Variables | Abbreviation | Resolution | Units | Data Source |
---|---|---|---|---|---|
Soil | Soil type | ST | 1:1,000,000 | China soil map | |
Topography | Altitude | DEM | 30 m | m | ASTER GDEM V3 |
Vegetation | Vegetation type | VT | 1:1,000,000 | China vegetation map | |
Normalized difference vegetation index (Monthly averages) | NDVI | 1000 m | https://lpdaac.usgs.gov/products/mod13a2v006/, accessed on 12 September 2024 | ||
Vegetation exposure | VE | 1000 m | |||
Historical climate (2000–2020) | Monthly Maximum temperature | TMAX | 2.5 min | °C | https://www.worldclim.org/data/index.html, accessed on 10 September 2024 |
Monthly Minimum temperature | TMIN | 2.5 min | °C | https://www.worldclim.org/data/index.html, accessed on 10 September 2024 | |
Monthly total precipitation | PRE | 2.5 min | mm | https://www.worldclim.org/data/index.html, accessed on 10 September 2024 | |
Future climate (2021–2040) | Monthly Maximum temperature | FTMAX | 30 s | °C | https://www.worldclim.org/data/index.html, accessed on 10 September 2024 |
Monthly Minimum temperature | FTMIN | 30 s | °C | https://www.worldclim.org/data/index.html, accessed on 10 September 2024 | |
Monthly total precipitation | FPRE | 30 s | mm | https://www.worldclim.org/data/index.html, accessed on 10 September 2024 |
2.3. MaxEnt Setting and Modeling
2.4. Future Climate Scenarios
2.5. Data Analysis
3. Results
3.1. Accuracy of Maxent Model and Dominant Environmental Variables
3.2. Threshold Values of Six Dominant Environmental Variables
3.3. Potential Suitable Areas for Oriental Migratory Locust Under Historical Climate Condition
3.4. Potential Suitable Areas for Oriental Migratory Locust in the Future
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, F.; Zhao, D.; Ma, E. Grasshopper researches in Hainan Island: Status and perspectives. Chin. J. Trop. Agric. 2006, 1, 53–59. [Google Scholar]
- Ni, S. Remote Sensing Monitoring and Prediction of Grassland Locusts in the Qinghai Lake Area; Shanghai Scientific and Technical Publishers: Shanghai, China, 2002. [Google Scholar]
- Shi, W.; Yan, Y.; Zhu, E.; Zhang, W.; Lin, B. Sustainable management of locust (Locusta migratoria manilensis) using Nosema locustae in Hainan Province. Acta Phytophylacica Sin. 2001, 28, 207–212. [Google Scholar]
- Lu, F.; Xu, Z.; Zhao, D.; Wang, A. Distribution and damage of grasshoppers in Danzhou. Chin. J. Trop. Agric. 2007, 27, 31–35. [Google Scholar]
- Ding, Y. Studies on the tropical savannah locust breeding area in Hainan, a new oriental migratory locust (Locusta migratoria manilensis weyen) breeding area in China. Acta Ecol. Sin. 1995, 15, 12–22. [Google Scholar]
- Chien, F.S.; Chau, K.Y.; Sadiq, M. Impact of climate mitigation technology and natural resource management on climate change in China. Resour. Pol. 2023, 81, 103367. [Google Scholar] [CrossRef]
- Guan, J.; Li, M.; Ju, X.; Lin, J.; Wu, J.; Zheng, J. The potential habitat of desert locusts is contracting: Predictions under climate change scenarios. PeerJ 2021, 9, e12311. [Google Scholar] [CrossRef]
- Hosni, E.M.; Al-Khalaf, A.A.; Nasser, M.G.; ElShahed, S.M.; Alashaal, S.A. Locusta migratoria (L.) (Orthoptera) in a warming world: Unravelling the ecological consequences of climate change using GIS. Biodivers. Data J. 2024, 12, e115845. [Google Scholar] [CrossRef]
- Zhou, Y.; She, X.; Jin, B.; He, Z. Occurrence and control of Locusta migratoria manilensis in Dongfang, Hainan Province. Chin. J. Trop. Agric. 2019, 39, 46–50. [Google Scholar]
- Du, G.; Zhao, H.; Tu, X.; Zhang, Z. Division of the inhabitable areas for Oedaleus decorus asiaticus in Inner Mongolia. Plant Prot. 2018, 44, 24–31. [Google Scholar]
- Chen, J.; Wang, X. Progress in application of remote sensing and GIS to the study of locust habitats. Ecol. Environ. Sci. 2012, 21, 970–976. [Google Scholar]
- Wang, R.; Li, Q.; Feng, C.; Shi, Z. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecol. Sin. 2017, 37, 8556–8566. [Google Scholar]
- Huang, Y.; Dong, Y.; Huang, W.; Ren, B.; Deng, Q.; Shi, Y.; Bai, J.; Ren, Y.; Geng, Y.; Ma, H. Overwintering distribution of fall armyworm (Spodoptera frugiperda) in Yunnan, China, and influencing environmental factors. Insects 2020, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar]
- Zhao, S.; Wang, H.; Liu, Y. Impact of climate change on distribution of suitable niches for black locust (Robinia pseudoacacia L.) plantation in China. Forests 2024, 15, 1616. [Google Scholar] [CrossRef]
- Liu, J.; Long, Q.; Li, H. Characteristics and control strategies of the East Asian migratory locust in Hainan Island. Entomol. Knowl. 1996, 2, 79–81. [Google Scholar]
- Wu, G.; Liu, K.; Li, Z. Experiment on control effect of Locusta migratoria manilensis (Meyen) in sugarcane fields by hot fogging concentrate. Chin. J. Trop. Agric. 2002, 22, 26–27+55. [Google Scholar]
- Wu, R.; Huo, Z.; Lu, Z.; Li, X.; Jia, Z. Summarization of research on meteorological environment affecting occurrence of locusts. J. Nat. Disasters 2005, 14, 66–73. [Google Scholar]
- Chen, S.; Wulangbater; Wu, X. Response of grasshoppers’ subsistence and breeding to climatic change in Inner Mongolia. J. Nat. Disasters 2007, 16, 463–466. [Google Scholar]
- Guo, A.; Wang, J.; Wang, C.; Song, Y. Meteorological suitability index of grasshopper growth and development in Inner Mongolia. Meteorol. Sci. Technol. 2009, 37, 42–47. [Google Scholar]
- Aragón, P.; Coca-Abia, M.M.; Llorente, V.; Lobo, J.M. Estimation of climatic favorable areas for locust outbreaks in Spain: Integrating species’ presence records and spatial information on outbreaks. J. Appl. Entomol. 2013, 137, 610–623. [Google Scholar] [CrossRef]
- He, K.; Huang, J. Remote sensing of locust and grasshopper plague in China: A Review. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics, Tianjin, China, 18–20 July 2016; pp. 103–108. [Google Scholar]
- Chen, H.; Nie, Y.; Liu, X.; Zhang, H. Research on prediction of potential suitable areas of populus euphratica based on MaxEnt model. China Agric. Inform. 2021, 33, 46–55. [Google Scholar]
- Zhang, X.; Rao, J.; Pan, Y. Progressive approach for risk prediction of rangeland locust hazard in Xinjiang based on remotely sensed data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 202–208. [Google Scholar]
- Mongare, R.; Abdel-Rahman, E.M.; Mudereri, B.T.; Kimathi, E.; Onywere, S.; Tonnang, H.E. Desert Locust (Schistocerca gregaria) invasion risk and vegetation damage in a key upsurge area. Earth 2023, 4, 187–208. [Google Scholar] [CrossRef]
- Geng, Y.; Zhao, L.; Huang, W.; Dong, Y.; Ma, H.; Guo, A.; Ren, Y.; Xing, N.; Huang, Y.; Sun, R.; et al. A landscape-based habitat suitability model (LHS model) for Oriental migratory locust area extraction at large scales: A case study along the middle and lower reaches of the Yellow River. Remote Sens. 2022, 14, 1058. [Google Scholar] [CrossRef]
- Chen, C.; Qian, J.; Chen, X.; Hu, Z.; Sun, J.; Wei, S.; Xu, K. Geographic distribution of desert locusts in Africa, Asia and Europe using multiple sources of remote-sensing data. Remote Sens. 2020, 12, 3593. [Google Scholar] [CrossRef]
- Sun, Z.; Ye, H.; Huang, W.; Qimuge, E.; Bai, H.; Nie, C.; Lu, L.; Qian, B.; Wu, B. Assessment of potential suitable habitats of the grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt modeling and remote sensing data. Insects 2023, 14, 138. [Google Scholar] [CrossRef]
- Tang, X.; Lu, F. Occurrence and control of Locusta migratoria manilensis (Meyen) in Hainan Province. J. Anhui Agric. Sci. 2009, 37, 13129–13130. [Google Scholar]
- Nie, C.; Ye, H.; Zhang, S.; Guo, J.; Huang, W. Risk assessment and sustainable development countermeasures of agricultural typhoon disaster for Hainan Island of China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 237–246. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar]
- Zhang, L.; Chen, X.; Xin, X. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Change Res. 2019, 15, 519–525. [Google Scholar]
- Sun, Z.; Nie, C.; Ye, H.; Lu, L. MaxEnt and remote sensing-based extraction of habitable areas for the Locusta migratoria manilensis in Hainan Island. China Agric. Inform. 2023, 35, 11–23. [Google Scholar]
- Zingore, K.M.; Sithole, G.; Abdel-Rahman, E.M.; Mohamed, S.A.; Ekesi, S.; Tanga, C.M.; Mahmoud, M.E.E. Global risk of invasion by Bactrocera zonata: Implications on horticultural crop production under changing climatic conditions. PLoS ONE 2020, 15, e0243047. [Google Scholar]
- Wu, R.; Guan, J.; Wu, J.; Ju, X.; An, Q.; Zheng, J. Predictions based on different climate change scenarios: The habitat of typical locust species is shrinking in Kazakhstan and Xinjiang, China. Insects 2022, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Papier, C.M.; Poulos, H.M.; Kusch, A. Invasive species and carbon flux: The case of invasive beavers (Castor canadensis) in riparian Nothofagus forests of Tierra del Fuego, Chile. Clim. Change 2019, 153, 219–234. [Google Scholar]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with MaxEnt: New extensions and acomprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar]
- Sun, Z.; Hu, Z.; Ye, H.; Huang, W.; Qimuge, E.; Zhang, Y. Application of MaxEnt and remote sensing technology in grasshopper disaster risk monitoring: An example from the agricultural heritage systems of East Ujimqin Banner. J. Ecol. Rural Environ. 2022, 38, 1265–1272. [Google Scholar]
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 2011, 222, 1343–1346. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bai, H.; Sun, Z.; Yao, X.; Kong, J.; Wang, Y.; Zhang, X.; Chen, W.; Fan, P.; Li, S.; Liang, Z.; et al. Viticultural suitability analysis based on multi-source data highlights climate-change-induced decrease in potential suitable areas: A case analysis in Ningxia, China. Remote Sens. 2022, 14, 3717. [Google Scholar] [CrossRef]
- Lu, L.; Sun, Z.; Qimuge, E.; Ye, H.; Huang, W.; Nie, C.; Wang, K.; Zhou, Y. Using remote sensing data and species-environmental matching model to predict the potential distribution of grassland rodents in the Northern China. Remote Sens. 2022, 14, 2168. [Google Scholar] [CrossRef]
- Lu, L.; Kong, W.; Qimuge, E.; Ye, H.; Sun, Z.; Wang, N.; Du, B.; Zhou, Y.; Weijun; Huang, W. Detecting key factors of grasshopper occurrence in typical steppe and meadow steppe by integrating machine learning model and remote sensing data. Insects 2022, 13, 894. [Google Scholar] [CrossRef] [PubMed]
- Puchałka, R.; Dyderski, M.K.; Vítková, M.; Sádlo, J.; Klisz, M.; Netsvetov, M.; Prokopuk, Y.; Matisons, R.; Mionskowski, M.; Wojda, T.; et al. Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Glob. Change Biol. 2021, 27, 1587–1600. [Google Scholar]
- Tian, Z.; Huo, D.; Yi, K.; Que, J.; Lu, Z.; Hou, J. Evaluation of suitable habitats for birds based on MaxEnt and Google Earth Engine: A case study of Baer’s Pochard (Aythya baeri) in Baiyangdian, China. Remote Sens. 2023, 16, 64. [Google Scholar] [CrossRef]
- Zhang, H.; Sa, C.; Meng, F.; Luo, M.; Wang, M.; Bao, W.; Fang, Y. Temporal and spatial changes and driving characteristics of locust habitat in Inner Mongolia from 2001 to 2020. Chin. J. Grassl. 2024, 46, 108–121. [Google Scholar]
- Zhang, X.; Huang, W.; Ye, H.; Lu, L. Study on the identification of habitat suitability areas for the dominant locust species Dasyhippus barbipes in inner Mongolia. Remote Sens. 2023, 15, 1718. [Google Scholar] [CrossRef]
- Li, D.; Gan, H.; Li, X.; Zhou, H.; Zhang, H.; Liu, Y.; Dong, R.; Hua, L.; Hu, G. Changes in the range of four advantageous grasshopper habitats in the Hexi Corridor under future climate conditions. Insects 2024, 15, 243. [Google Scholar] [CrossRef]
- Salih, A.A.M.; Baraibar, M.; Mwangi, K.K.; Artan, G. Climate change and locust outbreak in East Africa. Nat. Clim. Change 2020, 10, 584–585. [Google Scholar]
Climate Scenarios | County | Highly Suitable Areas (km2) | Moderately High Suitable Areas (km2) | Moderately Low Suitable Areas (km2) |
---|---|---|---|---|
Historical scenarios | Dongfang City | 234 | 739 | 373 |
Ledong Li Autonomous County | 166 | 436 | 546 | |
Changjiang Li Autonomous County | 93 | 504 | 338 | |
Danzhou City | 11 | 684 | 882 | |
SSP1-2.6 | Dongfang City | 374 | 729 | 429 |
Ledong Li Autonomous County | 195 | 411 | 255 | |
Changjiang Li Autonomous County | 218 | 504 | 342 | |
Danzhou City | 31 | 791 | 845 | |
SSP2-4.5 | Dongfang City | 275 | 765 | 392 |
Ledong Li Autonomous County | 182 | 440 | 275 | |
Changjiang Li Autonomous County | 108 | 554 | 379 | |
Danzhou City | 7 | 806 | 661 | |
SSP3-7.0 | Dongfang City | 371 | 719 | 484 |
Ledong Li Autonomous County | 213 | 418 | 318 | |
Changjiang Li Autonomous County | 232 | 464 | 418 | |
Danzhou City | 15 | 662 | 1646 | |
SSP5-8.5 | Dongfang City | 282 | 765 | 595 |
Ledong Li Autonomous County | 191 | 403 | 515 | |
Changjiang Li Autonomous County | 140 | 536 | 482 | |
Danzhou City | 26 | 706 | 1013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Ye, H.; Kong, W.; Nie, C.; Bai, H. Impact of Climate Change on Oriental Migratory Locust Suitability: A Multi-Source Data and MaxEnt-Based Analysis in Hainan Island. Remote Sens. 2025, 17, 1329. https://doi.org/10.3390/rs17081329
Sun Z, Ye H, Kong W, Nie C, Bai H. Impact of Climate Change on Oriental Migratory Locust Suitability: A Multi-Source Data and MaxEnt-Based Analysis in Hainan Island. Remote Sensing. 2025; 17(8):1329. https://doi.org/10.3390/rs17081329
Chicago/Turabian StyleSun, Zhongxiang, Huichun Ye, Weiping Kong, Chaojia Nie, and Huiqing Bai. 2025. "Impact of Climate Change on Oriental Migratory Locust Suitability: A Multi-Source Data and MaxEnt-Based Analysis in Hainan Island" Remote Sensing 17, no. 8: 1329. https://doi.org/10.3390/rs17081329
APA StyleSun, Z., Ye, H., Kong, W., Nie, C., & Bai, H. (2025). Impact of Climate Change on Oriental Migratory Locust Suitability: A Multi-Source Data and MaxEnt-Based Analysis in Hainan Island. Remote Sensing, 17(8), 1329. https://doi.org/10.3390/rs17081329