A Novel Methodology to Correct Chlorophyll-a Concentrations from Satellite Data and Assess Credible Phenological Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data
2.2. Case Study: Ambracian Gulf
2.3. Field Data During 2010–2011
2.4. Pre-Processing Analysis
2.5. Breakpoint Processing and LOESS Smoothing
2.6. Validation and Versatility of the Methodology Proposed
2.7. Temporal Coverage of Satellite Data
2.7.1. Monthly Temporal Coverage
2.7.2. Seasonal Temporal Coverage
2.7.3. Yearly Temporal Coverage
3. Results
3.1. LOESS Model Calibration Procedure with Field Measurements
3.2. Long-Term Chlorophyll-a Phenological Patterns
3.3. Seasonal Patterns of the Ambracian Gulf
3.4. Replicate Analysis in the Aitoliko Lagoon
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Chl-a | Chlorophyll-a concentration |
SR | Surface reflectance |
LOESS | Locally estimated scatterplot smoothing |
L3 | Processing Level-3 |
L2 | Processing Level-2 |
References
- Gómez-Jakobsen, F.; Ferrera, I.; Yebra, L.; Mercado, J.M. Two Decades of Satellite Surface Chlorophyll a Concentration (1998–2019) in the Spanish Mediterranean Marine Waters (Western Mediterranean Sea): Trends, Phenology and Eutrophication Assessment. Remote Sens. Appl. Soc. Environ. 2022, 28, 100855. [Google Scholar] [CrossRef]
- Häder, D.P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic Pollution of Aquatic Ecosystems: Emerging Problems with Global Implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef] [PubMed]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A New Wine in an Old Bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Peppa, M.; Vasilakos, C.; Kavroudakis, D. Eutrophication Monitoring for Lake Pamvotis, Greece, Using Sentinel-2 Data. ISPRS Int. J. Geo-Inf. 2020, 9, 143. [Google Scholar] [CrossRef]
- Cui, T.W.; Zhang, J.; Wang, K.; Wei, J.W.; Mu, B.; Ma, Y.; Zhu, J.H.; Liu, R.J.; Chen, X.Y. Remote Sensing of Chlorophyll a Concentration in Turbid Coastal Waters Based on a Global Optical Water Classification System. ISPRS J. Photogramm. Remote Sens. 2020, 163, 187–201. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, C.; Meng, L.; Lu, L.; Wu, Y.; Fan, R.; Li, S.; Sui, Z.; Huang, T.; Huang, C.; et al. Eutrophication and Lakes Dynamic Conditions Control the Endogenous and Terrestrial POC Observed by Remote Sensing: Modeling and Application. Ecol. Indic. 2021, 129, 107907. [Google Scholar] [CrossRef]
- Qing, S.; Cui, T.; Lai, Q.; Bao, Y.; Diao, R.; Yue, Y.; Hao, Y. Improving Remote Sensing Retrieval of Water Clarity in Complex Coastal and Inland Waters with Modified Absorption Estimation and Optical Water Classification Using Sentinel-2 MSI. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102377. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z.; Mao, G.; Chen, L.; Crittenden, J.; Li, R.Y.M.; Chai, L. Evaluation of Eutrophication in Freshwater Lakes: A New Non-Equilibrium Statistical Approach. Ecol. Indic. 2019, 102, 686–692. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Yu, P.; Yang, X.; Zhang, L.; Geng, Z.; He, K. Oxygenation and Synchronous Control of Nitrogen and Phosphorus Release at the Sediment-Water Interface Using Oxygen Nano-Bubble Modified Material. Sci. Total Environ. 2020, 725, 138258. [Google Scholar] [CrossRef]
- Knutsen, Ø.; Stefanakos, C.; Slagstad, D.; Ellingsen, I.; Zacharias, I.; Biliani, I.; Berg, A. Studying the Evolution of Hypoxia/Anoxia in Aitoliko Lagoon, Greece, Based on Measured and Modeled Data. Front. Mar. Sci. 2024, 11, 1299202. [Google Scholar] [CrossRef]
- Biliani, I.; Zacharias, I. A Methodology to Assess the Phenology Patterns of a Eutrophic Water Body, Using Remote Sensing Data and Principal Component Analysis. Remote Sens. Appl. Soc. Environ. 2024, 36, 101387. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication Changes in Fifty Large Lakes on the Yangtze Plain of China Derived from MERIS and OLCI Observations. Remote Sens. Environ. 2020, 246, 111890–111907. [Google Scholar] [CrossRef]
- Hong, T.; Li, Y.; Lv, H.; Meng, B.; Bi, S.; Zhou, L. Patterns of Phytoplankton Phenology and Its Response to Temperature of Water Surface in Lake Taihu Based on MODIS Data. J. Geo-Inf. Sci. 2020, 22, 1935–1945. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic Rates Derived from Satellitebased Chlorophyll Concentration. Limnol. Oceanogr. 1997, 41, 1–20. [Google Scholar] [CrossRef]
- Yu, S.; Bai, Y.; He, X.; Gong, F.; Li, T. A New Merged Dataset of Global Ocean Chlorophyll-a Concentration for Better Trend Detection. Front. Mar. Sci. 2023, 10, 1051619. [Google Scholar] [CrossRef]
- Salgado-Hernanz, P.M.; Racault, M.F.; Font-Muñoz, J.S.; Basterretxea, G. Trends in Phytoplankton Phenology in the Mediterranean Sea Based on Ocean-Colour Remote Sensing. Remote Sens. Environ. 2019, 221, 50–64. [Google Scholar] [CrossRef]
- Henson, S.A.; Cole, H.S.; Hopkins, J.; Martin, A.P.; Yool, A. Detection of Climate Change-Driven Trends in Phytoplankton Phenology. Glob. Chang. Biol. 2018, 24, e101–e111. [Google Scholar] [CrossRef]
- Park, J.; Son, Y.; Lee, W.H. Variation of Efficiencies and Limits of Ultrasonication for Practical Algal Bloom Control in Fields. Ultrason. Sonochem. 2019, 55, 8–17. [Google Scholar] [CrossRef]
- Quang, N.H.; Sasaki, J.; Higa, H.; Huan, N.H. Spatiotemporal Variation of Turbidity Based on Landsat 8 OLI in Cam Ranh Bay and Thuy Trieu Lagoon, Vietnam. Water 2017, 9, 570. [Google Scholar] [CrossRef]
- Scott, J.P.; Werdell, P.J. Comparing Level-2 and Level-3 Satellite Ocean Color Retrieval Validation Methodologies. Opt. Express 2019, 27, 30140. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference. J. Geophys. Res. Ocean. 2012, 117, C01011. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Lee, Z.; Franz, B.A.; Bailey, S.W.; Werdell, P.J.; Proctor, C.W. Improving Satellite Global Chlorophyll a Data Products Through Algorithm Refinement and Data Recovery. J. Geophys. Res. Ocean. 2019, 124, 1524–1543. [Google Scholar] [CrossRef]
- Werther, M.; Odermatt, D.; Simis, S.G.H.; Gurlin, D.; Lehmann, M.K.; Kutser, T.; Gupana, R.; Varley, A.; Hunter, P.D.; Tyler, A.N.; et al. A Bayesian Approach for Remote Sensing of Chlorophyll-a and Associated Retrieval Uncertainty in Oligotrophic and Mesotrophic Lakes. Remote Sens. Environ. 2022, 283, 113295. [Google Scholar] [CrossRef]
- Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal Mapping of Urban Air Temperature Using Remote Sensing and Crowdsourced Weather Data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
- Shi, X.; Gu, L.; Jiang, T.; Zheng, X.; Dong, W.; Tao, Z. Retrieval of Chlorophyll-a Concentrations Using Sentinel-2 MSI Imagery in Lake Chagan Based on Assessments with Machine Learning Models. Remote Sens. 2022, 14, 4924. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A Machine Learning Approach to Estimate Chlorophyll-a from Landsat-8 Measurements in Inland Lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Pozdnyakov, D.V.; Pettersson, L.H.; Korosov, A.A. Springer Remote Sensing/Photogrammetry Exploring the Marine Ecology from Space Experience from Russian-Norwegian Cooperation, 1st ed.; Springer: Cham, Switzerland, 2017; ISBN 9783319300740. [Google Scholar]
- Soomets, T.; Toming, K.; Paavel, B.; Kutser, T. Evaluation of Remote Sensing and Modeled Chlorophyll-a Products of the Baltic Sea. J. Appl. Remote Sens. 2022, 16, 046516. [Google Scholar] [CrossRef]
- Gudmundsson, K.; Ágústsdóttir, K.; McGinty, N.; Magnússon, Á.; Gudfinnsson, H.; Marteinsdóttir, G. A Regional Correction Model for Satellite Surface Chlorophyll Concentrations, Based on Measurements from Sea Water Samples Collected around Iceland. Methods Oceanogr. 2016, 17, 83–96. [Google Scholar] [CrossRef]
- Georgiou, N.; Fakiris, E.; Koutsikopoulos, C.; Papatheodorou, G.; Christodoulou, D.; Dimas, X.; Geraga, M.; Kapellonis, Z.G.; Vaziourakis, K.M.; Noti, A.; et al. Spatio-Seasonal Hypoxia/Anoxia Dynamics and Sill Circulation Patterns Linked to Natural Ventilation Drivers, in a Mediterranean Landlocked Embayment: Amvrakikos Gulf, Greece. Geosciences 2021, 11, 241. [Google Scholar] [CrossRef]
- Kountoura, K.; Zacharias, I. Annual Hypoxia Dynamics in a Semi-Enclosed Mediterranean Gulf. J. Mar. Syst. 2014, 139, 320–331. [Google Scholar] [CrossRef]
- Biliani, S.E.; Manariotis, I.D. Sodium Chloride and Nitrogen Effects on Chlorella Vulgaris Growth and Biocommodities Production. Desalin. Water Treat. 2021, 237, 159–169. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equations for Determining Chlorophylls a, b, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; O’Brien, M.C.; Siegel, D.A.; Toole, D.; Menzies, D.; Smith, R.C.; Mueller, J.L.; Mitchell, B.G.; Kahru, M.; et al. SeaWiFS Postlaunch Technical Report Series; NASA: Washington, DC, USA, 2000; Volume 11.
- Yan, X.; Gao, Z.; Jiang, Y.; He, J.; Yin, J.; Wu, J. Application of Synthetic DINCAE–BME Spatiotemporal Interpolation Framework to Reconstruct Chlorophyll-a from Satellite Observations in the Arabian Sea. J. Mar. Sci. Eng. 2023, 11, 743. [Google Scholar] [CrossRef]
- Gerber, F.; Furrer, R.; Schaepman-Strub, G.; de Jong, R.; Schaepman, M.E. Predicting Missing Values in Spatio-Temporal Satellite Data. IEEE Trans. Geosci. Remote Sens. 2016, 56, 2841–2853. [Google Scholar]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar]
- Moradi, M. Wavelet Transform Approach for Denoising and Decomposition of Satellite-Derived Ocean Color Time-Series: Selection of Optimal Mother Wavelet. Adv. Space Res. 2022, 69, 2724–2744. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Jiao, W.; Zeng, X.; Xing, X.; Zhang, L.; Yan, J.; Hong, Y. Drought Monitoring Based on a New Combined Remote Sensing Index across the Transitional Area between Humid and Arid Regions in China. Atmos. Res. 2021, 264, 105850. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar]
- Hu, C.; Ding, L.; Peng, K. Global Burden of Major Depressive Disorders Attributable to Intimate Partner Violence against Women: Magnitude, Temporal Trends, and Regional Inequalities. J. Affect. Disord. 2024, 363, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Wang, J.; Wang, C.; Crétaux, J.F. Constructing Long-Term High-Frequency Time Series of Global Lake and Reservoir Areas Using Landsat Imagery. Remote Sens. Environ. 2019, 232, 111210. [Google Scholar] [CrossRef]
- Stock, A.; Subramaniam, A.; Van Dijken, G.L.; Wedding, L.M.; Arrigo, K.R.; Mills, M.M.; Cameron, M.A.; Micheli, F. Comparison of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sens. 2020, 12, 3313. [Google Scholar] [CrossRef]
- McEliece, R.; Hinz, S.; Guarini, J.M.; Coston-Guarini, J. Evaluation of Nearshore and Offshore Water Quality Assessment Using UAV Multispectral Imagery. Remote Sens. 2020, 12, 2258. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, R.; Guo, J.; Zhang, Y.; Zhang, S.; Lv, X.; Shi, H. Three-Dimensional Spatial Interpolation for Chlorophyll-a and Its Application in the Bohai Sea. Sci. Rep. 2023, 13, 7930. [Google Scholar] [CrossRef]
- Benzouaï, S.; Louanchi, F.; Smara, Y. Phytoplankton Phenology in Algerian Continental Shelf and Slope Waters Using Remotely Sensed Data. Estuar. Coast. Shelf Sci. 2020, 247, 107070. [Google Scholar] [CrossRef]
- Sarafanov, M.; Kazakov, E.; Nikitin, N.O.; Kalyuzhnaya, A.V. A Machine Learning Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example Regarding Land Surface Temperature, Surface Albedo and Ndvi. Remote Sens. 2020, 12, 3865. [Google Scholar] [CrossRef]
- Maslukah, L.; Setiawan, R.Y.; Nurdin, N.; Helmi, M.; Widiaratih, R. Phytoplankton Chlorophyll-a Biomass and the Relationship with Water Quality in Barrang Caddi, Spermonde, Indonesia. Ecol. Eng. Environ. Technol. 2021, 23, 25–33. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L. Modeling Impacts of Future Climate Change on Reservoir Storages and Irrigation Water Demands in a Mediterranean Basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological Change Detection While Accounting for Abrupt and Gradual Trends in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Lemos, A.T.; Ghisolfi, R.D.R.; Mazzini, P.L.F. Annual Phytoplankton Blooming Using Satellite-Derived Chlorophyll-a Data around the Vitória-Trindade Chain, Southeastern Brazil. Deep. Res. Part I Oceanogr. Res. Pap. 2018, 136, 62–71. [Google Scholar] [CrossRef]
- Fehri, R.; Khlifi, S.; Vanclooster, M. Disaggregating SDG-6 Water Stress Indicator at Different Spatial and Temporal Scales in Tunisia. Sci. Total Environ. 2019, 694, 133766. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, B.; Ali, S.; Sahin, O.G.; Gunduz, O. Model-Coupled GRACE-Based Analysis of Hydrological Dynamics of Drying Lake Urmia and Its Basin. Hydrol. Process. 2023, 37, e14893. [Google Scholar] [CrossRef]
- Rojo, J.; Rivero, R.; Romero-Morte, J.; Fernández-González, F.; Pérez-Badia, R. Modeling Pollen Time Series Using Seasonal-Trend Decomposition Procedure Based on LOESS Smoothing. Int. J. Biometeorol. 2017, 61, 335–348. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Guan, Y.; Li, Q.; Sun, Z. Misalignment Angle Calibration of Semi-Active Laser Seeker Based on Locally Weighted Scatterplot Smoothing and Interpolation Method. Measurement 2022, 205, 112182. [Google Scholar] [CrossRef]
- Cauba, A.G.; Darvishzadeh, R.; Schlund, M.; Nelson, A.; Laborte, A. Estimation of Transplanting and Harvest Dates of Rice Crops in the Philippines Using Sentinel-1 Data. Remote Sens. Appl. Soc. Environ. 2025, 37, 101435. [Google Scholar] [CrossRef]
- Dash, P.; Saha, K.; Digiacomo, P.; Miller, S.D.; Zhang, H.M.; Lazzaro, R.; Son, S. Trends in Satellite-Based Ocean Parameters through Integrated Time Series Decomposition and Spectral Analysis. Part I: Chlorophyll, Sea Surface Temperature, and Sea Level Anomaly. J. Atmos. Ocean. Technol. 2025, 42, 91–123. [Google Scholar] [CrossRef]
- Petus, C.; Chust, G.; Gohin, F.; Doxaran, D.; Froidefond, J.M.; Sagarminaga, Y. Estimating Turbidity and Total Suspended Matter in the Adour River Plume (South Bay of Biscay) Using MODIS 250-m Imagery. Cont. Shelf Res. 2010, 30, 379–392. [Google Scholar] [CrossRef]
- Ndungu, J.; Monger, B.C.; Augustijn, D.C.M.; Hulscher, S.J.M.H.; Kitaka, N.; Mathooko, J.M. Evaluation of Spatio-Temporal Variations in Chlorophyll-a in Lake Naivasha, Kenya: Remote-Sensing Approach. Int. J. Remote Sens. 2013, 34, 8142–8155. [Google Scholar] [CrossRef]
- Pavlidou, A.; Simboura, N.; Rousselaki, E.; Tsapakis, M.; Pagou, K.; Drakopoulou, P.; Assimakopoulou, G.; Kontoyiannis, H.; Panayotidis, P. Methods of Eutrophication Assessment in the Context of the Water Framework Directive: Examples from the Eastern Mediterranean Coastal Areas. Cont. Shelf Res. 2015, 108, 156–168. [Google Scholar] [CrossRef]
- Gianni, A.; Kehayias, G.; Zacharias, I. Temporal and Spatial Distribution of Physico-Chemical Parameters in an Anoxic Lagoon, Aitoliko, Greece. J. Environ. Biol. 2012, 33, 107–114. [Google Scholar] [PubMed]
- Avramidis, P.; Bekiari, V.; Christodoulou, D.; Papatheodorou, G. Sedimentology and Water Column Stratification in a Permanent Anoxic Mediterranean Lagoon Environment, Aetoliko Lagoon, Western Greece. Environ. Earth Sci. 2015, 73, 5687–5701. [Google Scholar] [CrossRef]
- Park, J.; Khanal, S.; Zhao, K.; Byun, K. Remote Sensing of Chlorophyll-a and Water Quality over Inland Lakes: How to Alleviate Geo-Location Error and Temporal Discrepancy in Model Training. Remote Sens. 2024, 16, 2761. [Google Scholar] [CrossRef]
- Lacava, T.; Ciancia, E.; Di Polito, C.; Madonia, A.; Pascucci, S.; Pergola, N.; Piermattei, V.; Satriano, V.; Tramutoli, V. Evaluation of MODIS-Aqua Chlorophyll-a Algorithms in the Basilicata Ionian Coastal Waters. Remote Sens. 2018, 10, 987. [Google Scholar] [CrossRef]
- Ciancia, E.; Coviello, I.; Di Polito, C.; Lacava, T.; Pergola, N.; Satriano, V.; Tramutoli, V. Investigating the Chlorophyll-a Variability in the Gulf of Taranto (North-Western Ionian Sea) by a Multi-Temporal Analysis of MODIS-Aqua Level 3/Level 2 Data. Cont. Shelf Res. 2018, 155, 34–44. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Z.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller-Karger, F.E. Assessment of Estuarine Water-Quality Indicators Using MODIS Medium-Resolution Bands: Initial Results from Tampa Bay, FL. Remote Sens. Environ. 2004, 93, 423–441. [Google Scholar] [CrossRef]
- Liang, S.; Li, Y.; Wei, H.; Dong, L.; Zhang, J.; Xiao, C. Research on Hyperspectral Surface Reflectance Dataset of Typical Ore Concentration Area in Hami Remote Sensing Test Field. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 10, 137–144. [Google Scholar] [CrossRef]
Scenario | Max Chlorophyll-a (mg/m3) | LOESS Span | Line Color | Description |
---|---|---|---|---|
A1 | 10 | 0.03 | Green | Conservative threshold with light smoothing |
A2 | 50 | 0.03 | Magenta | Moderate threshold with light smoothing |
A3 | 100 | 0.03 | Purple | High threshold with light smoothing |
Initial | N/A | N/A | Black | Very high threshold with small smoothing |
L3 | N/A | N/A | Red | L3 chlorophyll-a product |
Field | N/A | N/A | Orange | Field data measurements for validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biliani, I.; Skamnia, E.; Economou, P.; Zacharias, I. A Novel Methodology to Correct Chlorophyll-a Concentrations from Satellite Data and Assess Credible Phenological Patterns. Remote Sens. 2025, 17, 1156. https://doi.org/10.3390/rs17071156
Biliani I, Skamnia E, Economou P, Zacharias I. A Novel Methodology to Correct Chlorophyll-a Concentrations from Satellite Data and Assess Credible Phenological Patterns. Remote Sensing. 2025; 17(7):1156. https://doi.org/10.3390/rs17071156
Chicago/Turabian StyleBiliani, Irene, Ekaterini Skamnia, Polychronis Economou, and Ierotheos Zacharias. 2025. "A Novel Methodology to Correct Chlorophyll-a Concentrations from Satellite Data and Assess Credible Phenological Patterns" Remote Sensing 17, no. 7: 1156. https://doi.org/10.3390/rs17071156
APA StyleBiliani, I., Skamnia, E., Economou, P., & Zacharias, I. (2025). A Novel Methodology to Correct Chlorophyll-a Concentrations from Satellite Data and Assess Credible Phenological Patterns. Remote Sensing, 17(7), 1156. https://doi.org/10.3390/rs17071156