Remote Sensing Applications in Ocean Observation (Second Edition)
Abstract
:1. Introduction
2. Multi-Source Data Fusion, Sensor Calibration, and Information Extraction
3. Advanced Algorithms and Machine Learning Applications in Remote Sensing
4. Spatiotemporal Dynamics and Environmental Monitoring
5. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Huang, E.; Chen, B.; Luo, K.; Chen, S. Effect of the One-to-Many Relationship between the Depth and Spectral Profile on Shallow Water Depth Inversion Based on Sentinel-2 Data. Remote Sens. 2024, 16, 1759. https://doi.org/10.3390/rs16101759
- Zeng, K.; Lyu, R.; Li, H.; Suo, R.; Du, T.; He, M. Studying the Internal Wave Generation Mechanism in the Northern South China Sea Using Numerical Simulation, Synthetic Aperture Radar, and In Situ Measurements. Remote Sens. 2024, 16, 1440. https://doi.org/10.3390/rs16081440
- Li, H.; He, X.; Shanmugam, P.; Bai, Y.; Wang, D.; Li, T.; Gong, F. Assessing and Improving the Accuracy of Visible Infrared Imaging Radiometer Suite Ocean Color Products in Environments with High Solar Zenith Angles. Remote Sens. 2024, 16, 339. https://doi.org/10.3390/rs16020339
- Lipinskaya, N.A.; Salyuk, P.A.; Golik, I.A. Variations and Depth of Formation of Submesoscale Eddy Structures in Satellite Ocean Color Data in the Southwestern Region of the Peter the Great Bay. Remote Sens. 2023, 15, 5600. https://doi.org/10.3390/rs15235600
- Zheng, X.; Zhang, D.; Zhao, J.; Jiang, M. On-Orbit Calibration and Wet Tropospheric Correction of HY-2C Correction Microwave Radiometer. Remote Sens. 2023, 15, 3633. https://doi.org/10.3390/rs15143633
- Nekrasov, A.; Khachaturian, A.; Fidge, C. Optimization of Airborne Scatterometer NRCS Semicircular Sampling for Sea Wind Retrieval. Remote Sens. 2023, 15, 1613. https://doi.org/10.3390/rs15061613
- Yang, Z.; Wang, G.; Feng, L.; Wang, Y.; Wang, G.; Liang, S. A Transformer Model for Coastline Prediction in Weitou Bay, China. Remote Sens. 2023, 15, 4771. https://doi.org/10.3390/rs15194771
- Chowdhury, S.J.K.; Harun-Al-Rashid, A.; Yang, C.-S.; Shin, D.-W. Detection of Macroalgal Bloom from Sentinel−1 Imagery. Remote Sens. 2023, 15, 4764. https://doi.org/10.3390/rs15194764
- Shang, W.; Gao, Z.; Gao, M.; Jiang, X. Monitoring Green Tide in the Yellow Sea Using High-Resolution Imagery and Deep Learning. Remote Sens. 2023, 15, 1101. https://doi.org/10.3390/rs15041101
- Yu, J.; An, B.; Xu, H.; Sun, Z.; Tian, Y.; Wang, Q. An Iterative Algorithm for Predicting Seafloor Topography from Gravity Anomalies. Remote Sens. 2023, 15, 1069. https://doi.org/10.3390/rs15041069
- Li, H.; Liu, W.; Sun, G.; Chen, C.; Xing, M.; Zhang, Z.; Zhang, J. Concept of Spaceborne Ocean Microwave Dual-Function Integrated Sensor for Wind and Wave Measurement. Remote Sens. 2024, 16, 1472. https://doi.org/10.3390/rs16081472
- Hu, Z.; Lyu, K.; Hu, J. Modulations of the South China Sea Ocean Circulation by the Summer Monsoon Intraseasonal Oscillation Inferred from Satellite Observations. Remote Sens. 2024, 16, 1195. https://doi.org/10.3390/rs16071195
- Mitra, B.; Hridoy, A.-E.E.; Mahmud, K.; Uddin, M.S.; Talha, A.; Das, N.; Nath, S.K.; Shafiullah, M.D.; Rahman, S.M.; Rahman, M.M. Exploring Spatial and Temporal Dynamics of Red Sea Air Quality through Multivariate Analysis, Trajectories, and Satellite Observations. Remote Sens. 2024, 16, 381. https://doi.org/10.3390/rs16020381
- Andreev, A. Intra-Seasonal Variability of Sea Level on the Southwestern Bering Sea Shelf and Its Impact on the East Kamchatka and East Sakhalin Currents. Remote Sens. 2023, 15, 4984. https://doi.org/10.3390/rs15204984
- Shi, W.; Hu, J. Spatiotemporal Variation in Anticyclonic Eddies in the South China Sea during 1993–2019. Remote Sens. 2023, 15, 4720. https://doi.org/10.3390/rs15194720
- Yuan, Q.; Hu, J. Spatiotemporal Characteristics and Volume Transport of Lagrangian Eddies in the Northwest Pacific. Remote Sens. 2023, 15, 4355. https://doi.org/10.3390/rs15174355
References
- Visbeck, M. Ocean science research is key for a sustainable future. Nat. Commun. 2018, 9, 690. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, R.; Chevalier, N.; Corra, L.; Czerucka, D.; et al. Human health and ocean pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C.; et al. An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 2021, 8, 642372. [Google Scholar] [CrossRef]
- Capotondi, A.; Rodrigues, R.R.; Sen Gupta, A.; Benthuysen, J.A.; Deser, C.; Frölicher, T.L.; Lovenduski, N.S.; Amaya, D.J.; Le Grix, N.; Xu, T.; et al. A global overview of marine heatwaves in a changing climate. Commun. Earth Environ. 2024, 5, 701. [Google Scholar] [CrossRef]
- Fu, L.L.; Lee, T.; Liu, W.T.; Kwok, R. Fifty years of satellite remote sensing of the ocean. Meteorol. Monogr. 2019, 59, 5.1–5.46. [Google Scholar] [CrossRef]
- Ho, C.R.; Liu, A.K. Preface: Remote Sensing Applications in Ocean Observation. Remote Sens. 2023, 15, 415. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.-K.; Chuprin, A.; et al. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef]
- Woźniak, S.B.; Meler, J. Modelling Water Colour Characteristics in an Optically Complex Nearshore Environment in the Baltic Sea; Quantitative Interpretation of the Forel-Ule Scale and Algorithms for the Remote Estimation of Seawater Composition. Remote Sens. 2020, 12, 2852. [Google Scholar] [CrossRef]
- Tensubam, C.M.; Babanin, A.V.; Dash, M.K. Fingerprints of El Niño Southern Oscillation on global and regional oceanic chlorophyll-a timeseries (1997–2022). Sci. Total Environ. 2024, 955, 176893. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Lu, C.-Y.; Huang, S.-J.; Yang, T.-Z.; Chang, Y.-C.; Ho, C.-R. On the Reconstruction of Missing Sea Surface Temperature Data from Himawari-8 in Adjacent Waters of Taiwan Using DINEOF Conducted with 25-h Data. Remote Sens. 2022, 14, 2818. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Bellas-Manley, A.; Willis, J.K.; Fournier, S.; Vinogradova, N.; Nerem, R.S.; Piecuch, C.G.; Thompson, P.R.; Kopp, R. The rate of global sea level rise doubled during the past three decades. Commun. Earth Environ. 2024, 5, 601. [Google Scholar] [CrossRef]
- Olmedo, E.; Turiel, A.; González-Gambau, V.; González-Haro, C.; García-Espriu, A.; Gabarró, C.; Portabella, M.; Corbella, I.; Martín-Neira, M.; Arias, M.; et al. Increasing stratification as observed by satellite sea surface salinity measurements. Sci. Rep. 2022, 12, 6279. [Google Scholar] [CrossRef]
- Morrow, R.; Fu, L.L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; d’Ovidio, F.; Thomas Farrar, J.; Gille, S.T.; Lapeyre, G.; et al. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission. Front. Mar. Sci. 2019, 6, 232. [Google Scholar] [CrossRef]
- Kossieris, S.; Tsiakos, V.; Tsimiklis, G.; Amditis, A. Inland Water Level Monitoring from Satellite Observations: A Scoping Review of Current Advances and Future Opportunities. Remote Sens. 2024, 16, 1181. [Google Scholar] [CrossRef]
- Sapp, J.W.; Alsweiss, S.O.; Jelenak, Z.; Chang, P.S.; Carswell, J. Stepped Frequency Microwave Radiometer Wind-Speed Retrieval Improvements. Remote Sens. 2019, 11, 214. [Google Scholar] [CrossRef]
- Hwang, P.A. Ocean surface roughness from satellite observations and spectrum modeling of wind waves. J. Phys. Oceanogr. 2022, 52, 2143–2158. [Google Scholar] [CrossRef]
- La, T.V.; Messager, C. Advancement of Sea Surface Convective Wind Gust Observation by Different Satellite Sensors and Assessment with In Situ Measurements. Remote Sens. 2024, 16, 1400. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Wentz, F.J.; Brewer, M.; Hilburn, K.; Smith, D. Passive Microwave Remote Sensing of the Ocean: An Overview. In Oceanography from Space; Barale, V., Gower, J., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 13–33. [Google Scholar] [CrossRef]
- Reul, N.; Chapron, B.; Zabolotskikh, E.; Donlon, C.; Quilfen, Y.; Guimbard, S.; Piolle, J.F. A revised L-band radio-brightness sensitivity to extreme winds under tropical cyclones: The five year SMOS-storm database. Remote Sens. Environ. 2016, 180, 274–291. [Google Scholar] [CrossRef]
- Yi, D.L.; Melnichenko, O.; Hacker, P.; Fan, K. Satellite-Observed Time and Length Scales of Global Sea Surface Salinity Variability: A Comparison of Three Satellite Missions. Remote Sens. 2022, 14, 5435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-R. Remote Sensing Applications in Ocean Observation (Second Edition). Remote Sens. 2025, 17, 1153. https://doi.org/10.3390/rs17071153
Ho C-R. Remote Sensing Applications in Ocean Observation (Second Edition). Remote Sensing. 2025; 17(7):1153. https://doi.org/10.3390/rs17071153
Chicago/Turabian StyleHo, Chung-Ru. 2025. "Remote Sensing Applications in Ocean Observation (Second Edition)" Remote Sensing 17, no. 7: 1153. https://doi.org/10.3390/rs17071153
APA StyleHo, C.-R. (2025). Remote Sensing Applications in Ocean Observation (Second Edition). Remote Sensing, 17(7), 1153. https://doi.org/10.3390/rs17071153