Global Prediction of Whitecap Coverage Using Transfer Learning and Satellite-Derived Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Statistical Theory Derived Modeling of Whitecap Coverage
2.2. Satellite-Derived Whitecap Coverage
2.3. Transfer Learning Model
- Data preprocessing
- 2.
- Model Pre-training
- 3.
- Model Fine-tuning
3. Results
3.1. Model Evaluation
3.2. Spatial Error Patterns
3.3. Comparison with Wind Speed Parameterizations
3.4. Validation in the Westerly Zone of the Southern Hemisphere
3.5. Variable Importance
4. Discussion
4.1. Domain Adaptation and Model Generalization
4.2. Variables Importance on W
4.3. Comparison with In Situ Observation Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
W | whitecap coverage |
XDL | explainable deep learning |
WS | wind speed |
BLH | boundary layer height |
SP | surface pressure |
T2M | 2 m temperature |
SST | sea surface temperature |
SWH | significant wave height |
MWD | mean wave direction |
MWP | mean wave period |
MP2 | mean cross zero wave period |
References
- Anguelova, M.D. Big potential for tiny droplets. Nat. Geosci. 2021, 14, 543–544. [Google Scholar] [CrossRef]
- Veron, F. Ocean Spray. Annu. Rev. Fluid Mech. 2015, 47, 507–538. [Google Scholar] [CrossRef]
- Blanchard, D.C.; Syzdek, L.D. Film drop production as a function of bubble size. J. Geophys. Res. Ocean. 1988, 93, 3649–3654. [Google Scholar] [CrossRef]
- Lee, J.S.; Weon, B.M.; Park, S.J.; Je, J.H.; Fezzaa, K.; Lee, W.-K. Size limits the formation of liquid jets during bubble bursting. Nat. Commun. 2011, 2, 367. [Google Scholar] [CrossRef]
- Deike, L. Mass Transfer at the Ocean–Atmosphere Interface: The Role of Wave Breaking, Droplets, and Bubbles. Annu. Rev. Fluid Mech. 2022, 54, 191–224. [Google Scholar] [CrossRef]
- Andreas, E.L.; Monahan, E.C. The role of whitecap bubbles in air–sea heat and moisture exchange. J. Phys. Oceanogr. 2000, 30, 433–442. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Webster, F. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res. Ocean. 2006, 111, 2005JC003158. [Google Scholar] [CrossRef]
- Brumer, S.E.; Zappa, C.J.; Brooks, I.M.; Tamura, H.; Brown, S.M.; Blomquist, B.W.; Fairall, C.W.; Cifuentes-Lorenzen, A. Whitecap Coverage Dependence on Wind and Wave Statistics as Observed during SO GasEx and HiWinGS. J. Phys. Oceanogr. 2017, 47, 2211–2235. [Google Scholar] [CrossRef]
- Monahan, E.C.; O’Muircheartaigh, I.G. Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens. 1986, 7, 627–642. [Google Scholar] [CrossRef]
- Yuan, Y.; Han, L.; Hua, F.; Zhang, S.; Qiao, F.; Yang, Y.; Xia, C. The Statistical Theory of Breaking Entrainment Depth and Surface Whitecap Coverage of Real Sea Waves. J. Phys. Oceanogr. 2009, 39, 143–161. [Google Scholar] [CrossRef]
- Liu, M.; Yang, B.; Jia, N.; Zou, Z. Dependence of estimating whitecap coverage on currents and swells. J. Ocean Univ. China 2021, 20, 512–520. [Google Scholar] [CrossRef]
- Bortkovskii, R.S. Monahan, E.C., Ed.; The Sea State. In Air-Sea Exchange of Heat and Moisture During Storms; Springer: Dordrecht, The Netherlands, 1987; pp. 47–87. [Google Scholar] [CrossRef]
- Frew, N.M. The role of organic films in air–sea gas exchange. In The Sea Surface and Global Change, 1st ed.; Liss, P.S., Duce, R.A., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 121–172. [Google Scholar] [CrossRef]
- Salisbury, D.J.; Anguelova, M.D.; Brooks, I.M. On the variability of whitecap fraction using satellite-based observations: VARIABILITY IN GLOBAL WHITECAP FRACTION. J. Geophys. Res. Ocean. 2013, 118, 6201–6222. [Google Scholar] [CrossRef]
- Jia, N.; Zhao, D. The influence of wind speed and sea states on whitecap coverage. J. Ocean Univ. China 2019, 18, 282–292. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Sun, B.; Shi, Y. Improvements to the statistical theoretical model for wave breaking based on the ratio of breaking wave kinetic and potential energy. Sci. China Earth Sci. 2017, 60, 180–187. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Dong, C.; Su, T.; Sun, B.; Zou, B. Validation of an improved statistical theory for sea surface whitecap coverage using satellite remote sensing data. Sensors 2018, 18, 3306. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Y.; Qi, J.; Wang, H. Adaptability assessment of the whitecap statistical physics model with cruise observations under high sea states. Front. Mar. Sci. 2025, 12, 1486860. [Google Scholar] [CrossRef]
- Bakhoday-Paskyabi, M.; Reuder, J.; Flügge, M. Automated measurements of whitecaps on the ocean surface from a buoy-mounted camera. Methods Oceanogr. 2016, 17, 14–31. [Google Scholar] [CrossRef]
- Hwang, P.A.; Reul, N.; Meissner, T.; Yueh, S.H. Whitecap and wind stress observations by microwave radiometers: Global coverage and extreme conditions. J. Phys. Oceanogr. 2019, 49, 2291–2307. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Bettenhausen, M.H. Whitecap Fraction from Satellite Measurements: Algorithm Description. J. Geophys. Res. Ocean. 2019, 124, 1827–1857. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, Y.; Ding, J.; Jiao, J.; Tian, Q. Discrimination of oceanic whitecaps derived by sea surface wind using Sentinel-2 MSI images. J. Geophys. Res. Ocean. 2022, 127, e2021JC018208. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, F.; Shi, R. Whitecap Fraction Parameterization and Understanding with Deep Neural Network. Remote Sens. 2022, 15, 241. [Google Scholar] [CrossRef]
- Qi, J.; Yang, Y.; Zhang, J. Improving Statistical Modeling of Whitecap Coverage with Satellite-Derived Data and Machine Learning Nudging. In Proceedings of the IGARSS 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 5985–5988. [Google Scholar] [CrossRef]
- Weiss, K.R.; Khoshgoftaar, T.M. An Investigation of Transfer Learning and Traditional Machine Learning Algorithms. In Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA, 6–8 November 2016; pp. 283–290. [Google Scholar] [CrossRef]
- Lei, Z.; Wu, W.; Gu, Y.; Zhai, F.; Li, P. A general method to determine the optimal whitecapping dissipation coefficient in the SWAN model. Front. Mar. Sci. 2023, 10, 1298727. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; García-León, M.; Gracia, V. Hydro-morphodynamic modelling in Mediterranean storms–errors and uncertainties under sharp gradients. Nat. Hazards Earth Syst. Sci. 2014, 14, 2993–3004. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R. Digital Image Processing, 4th ed.; Pearson International: Mississauga, ON, Canada, 2017. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond (Version 4). arXiv 2019. [Google Scholar] [CrossRef]
- Scanlon, B.; Ward, B. The influence of environmental parameters on active and maturing oceanic whitecaps. J. Geophys. Res. Ocean. 2016, 121, 3325–3336. [Google Scholar] [CrossRef]
- Schwendeman, M.; Thomson, J. Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. J. Geophys. Res. Ocean. 2015, 120, 8346–8363. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Woolf, D.K.; Callaghan, A.H. Parameterizations and Algorithms for Oceanic Whitecap Coverage. J. Phys. Oceanogr. 2011, 41, 742–756. [Google Scholar] [CrossRef]
- Gandoin, R.; Garza, J. Underestimation of strong wind speeds offshore in ERA5: Evidence, discussion and correction. Wind Energy Sci. 2024, 9, 1727–1745. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Hamilton, R.I.; Papadopoulos, P.N. Using SHAP values and machine learning to understand trends in the transient stability limit. IEEE Trans. Power Syst. 2023, 39, 1384–1397. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Myrhaug, D.; Holmedal, L.E. Effects of wave age and air stability on whitecap coverage. Coast. Eng. 2008, 55, 959–966. [Google Scholar] [CrossRef]
- Liu, M.; Yang, B. Evaluation of Sea Surface Temperature-Dependent Whitecap Coverage Parameterizations Using In Situ Data. Ocean Sci. J. 2022, 57, 174–185. [Google Scholar] [CrossRef]
- Kraan, G.; Oost, W.A.; Janssen, P.A.E.M. Wave Energy Dissipation by Whitecaps. J. Atmos. Ocean. Technol. 1996, 13, 262–267. [Google Scholar] [CrossRef]
- Shi, B.; Feng, L.; He, H.; Hao, Y.; Peng, Y.; Liu, M.; Liu, Y.; Liu, J. A physics-guided attention-based neural network for sea surface temperature prediction. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4210413. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, P.; Liu, H.; Wang, P.; Wang, Y.; Zheng, W.; Yu, Z.; Jiang, J.; Li, Y.; He, H. A New Transformer Network for Short-Term Global Sea Surface Temperature Forecasting: Importance of Eddies. Environ. Earth Sci. 2025. Available online: https://www.preprints.org/manuscript/202503.0067 (accessed on 15 March 2025).
- He, H.; Shi, B.; Hao, Y.; Feng, L.; Lyu, X.; Ling, Z. Forecasting sea surface temperature during typhoon events in the Bohai Sea using spatiotemporal neural networks. Atmos. Res. 2024, 309, 107578. [Google Scholar] [CrossRef]
Reference | Formula | Wind Speed Range |
---|---|---|
Scanlon and Ward [32] | ||
Schwendeman and Thomson [33] | ||
Sablisbury et al. [14] | ||
Goddijn-Murphy et al. [34] |
Predictor | RMSE (%) | CRMSE (%) | MAE (%) | PC |
---|---|---|---|---|
Pre-trained Model | 1.61 | 1.46 | 1.34 | 0.70 |
Fine-tuned Model | 0.60 | 0.58 | 0.44 | 0.86 |
Scanlon and Ward [32] | 3.07 | 1.47 | 2.7 | 0.55 |
Schwendeman and Thomson [33] | 3.37 | 1.31 | 3.1 | 0.49 |
Sablisbury et al. [14] | 3.36 | 1.58 | 2.96 | 0.60 |
Goddijn-Murphy et al. [34] | 3.01 | 1.31 | 2.72 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Yang, Y.; Zhang, J. Global Prediction of Whitecap Coverage Using Transfer Learning and Satellite-Derived Data. Remote Sens. 2025, 17, 1152. https://doi.org/10.3390/rs17071152
Qi J, Yang Y, Zhang J. Global Prediction of Whitecap Coverage Using Transfer Learning and Satellite-Derived Data. Remote Sensing. 2025; 17(7):1152. https://doi.org/10.3390/rs17071152
Chicago/Turabian StyleQi, Jinpeng, Yongzeng Yang, and Jie Zhang. 2025. "Global Prediction of Whitecap Coverage Using Transfer Learning and Satellite-Derived Data" Remote Sensing 17, no. 7: 1152. https://doi.org/10.3390/rs17071152
APA StyleQi, J., Yang, Y., & Zhang, J. (2025). Global Prediction of Whitecap Coverage Using Transfer Learning and Satellite-Derived Data. Remote Sensing, 17(7), 1152. https://doi.org/10.3390/rs17071152